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Motivation

QCD partition function

at nonzero quark chemical potential
det D(u)]" = det D(—p”)

o fermion determinant is complex
& straightforward importance sampling not possible

# sign problem

QCD phase diagram has not yet been
determined non-perturbatively
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Outline

® complex actions

# Langevin dynamics

# thimble dynamics

#® Langevin versus Lefschetz

& summary

GA, Phys. Rev. D 88 (2013) 094501 (1308.4811)
GA, Lorenzo Bongiovanni, Erhard Seiler & D enes Sexty, 1407.2090

GA, Pietro Giudice & Erhard Seiler, Annals Phys. 337 (2013) 2 38
(1306.3075)
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Complex actions

one degree of freedom: 7 = /d:c e 5(2)

complex holomorphic action S(z) € C

#® numerical sign problem
# dominant configurations in the (path) integral?

Rep(x)
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|

# real and positive distribution P(x,y)?
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|
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Complex actions

various approaches relying on holomorphicity:
go into the complex plane

# saddle point/steepest descent: Lefschetz thimbles

Witten 10
Cristoforetti, Di Renzo, Mukherjee, Scorzato, (Schmidt) 1 2-14
Fujii, Honda, Kato, Kikukawa, Komatsu, Sano 13
Dunne, Unsal et al 12-14

#® complex Langevin dynamics/stochastic quantisation

GA, Seiler, Sexty, Stamatescu,
James, Bongiovanni, Giudice, Jaeger, Attanasio

see talk by Dénes Sexty for progress in gauge theories
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Complex Langevin dynamics

zero-dimensional example

Langevin dynamics: complex action S(z)

® :=-0,52)+n 2 =T+ 1y
# associated Fokker-Planck equation (FPE)

P(z,y;t) = |0:(0z + Red,S(2)) + 0yImd,S(2)|P(x, y; t)

® (equilibrium) distribution in complex plane: P(x,y)
o observables

i) — [ dxdy P(z,y)O(x + iy)
Oz +1y)) = [ dedy Pz, )

® P(z,y) real and non-negative: no sign problem

® criteria for correctness
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Lefschetz thimbles

generalised saddle point integration/steepest descent:
extend definition of path integral Witten 10
#® Chern-Simons theories

# mathematical foundation in Morse theory

formulation:

find all stationary points z; of holomorphic action S(z)
paths of steepest descent: stable thimbles 7,

paths of steepest ascent: unstable thimbles K,

Im S(z) constant along thimble &

e o o 0

Integrate over stable thimbles, with proper weighting
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Lefschetz thimbles

generalised saddle point integration/steepest descent:

# Integrate over stable thimbles

Z — Z mke—iImS(Zk) / dZ e—ReS(Z)
I Tk
_ ka —iImS(z1) / ds ' (5)e—ReS ()
k

® intersection numbers: m; = (C, K},)
(C' = original contour, ;. = unstable thimble)

# residual sign problem: complex Jacobian J(s) = 2/(s)

» global sign problem: phases e~ 1m5(z#)
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Lefschetz thimbles

numerical Lefschetz approach di Renzo et al 12

# find all saddle points/thimbles in field theory?
# Integrate over dominant thimble 7, only

7 — e—iImS(zo)/ dz e—ReS(z)

# motivated by universality
# no global sign problem
# residual sign problem remaining

validity?
#® successful e.g. in interacting 4-dim Bose gas with u #£ 0

SEWM14, July 2014 —p. 7



Langevin versus Lefschetz

two approaches in the complex plane:

# Langevin

_ [ dxdy P(z,y)O(x + iy)
fda:dy P(x,y)

(0(2))

® Lefschetz

B Zk mke—iImS(zk) fjk dz e—ReS(z)O(Z)
Zk mke—iImS(zk) fjk dz e—ReS(2)

(0(2))

# two- versus one-dimensional
# real versus residual/global phases

relation? validity? = simple models
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Langevin versus Lefschetz
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Quartic model
- -S 0 9 Ay
Z:/ dx e S(z) = -2+ —x
complex mass parameterc = A+ iB, A € R

often used toy model Ambjorn & Yang 85, Klauder & Petersen 85,

Okamoto et al 89, Duncan & Niedermaier 12
essentially analytical proof for CL*: GA, Giudice & Seiler 13

# CL gives correct result for all observables (z™)
provided that A > 0 and A > B?/3

# based on properties of the distribution P(x,y)
o follows from classical flow or directly from FPE

* GA, Seiler, Stamatescu 09 + James 11
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Quartic model

o numerical solution of FPE for P(x,y)
# distribution is localised in a strip around real axis
® P(x,y) =0when |y| >y_ with y_ =0.303forc =1+
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Langevin versus Lefschetz

Lefschetz thimbles for quartic model

& critical points:

20 =10 i //,/ |
L o=14,A=1 ” ///, ]

24 = j:l\/O'/i)\ ///
 thimbles can be e A _
computed - hotconwbung -
analytically = |
ImS(ZO) — O 22 = 1 )'(2 i 2

ImS(24) = —AB/2)

o for A > 0: only 1 thimble contributes

# Integrating along thimble gives correct result, with
Inclusion of complex Jacobian
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Quartic model: thimbles

compare thimble and FP distribution P(x,y)

0.3 T I T T I

0.15

-0.15

| = >0.98 local saddle point #(x,y)
— thimble

- I |
03] 05

|
0
X

o thimble and P(z,y) follow each other
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Quartic model: thimbles

compare thimble and FP distribution P(z,y)

0.3

o=14,A=1 |

0.15

> 0.5 global max oP(x,y)
015 — thimble

|
0.5 1 15

<ol

# thimble and P(x,y) follow each other
#® however, weight distribution quite different

Intriguing result: complex Langevin process finds the
thimble — is this generic?
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Langevin versus Lefschetz

compare evolution equations in more detalil
#® complex Langevin (CL) dynamics
T =—Red,S(z) +1n y=—Ima,S(z2)
® Lefshetz thimble dynamics, with z(t — co) = 2,
= —Red,S5(2) y = +Im0,5(2)
= change in sign for y drift

# stable and unstable fixed points

Langevin:
# unstable runaways as y — +oo
| # saddle points
thimbles: . .
o stable thimbles coming from y — 40
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Langevin versus Lefschetz

deform quartic model with linear term, break symmetry

heC

Langevin flow for
c=1h=1+1

# one stable/two unstable fixed points for CL
® y — —oo classical runaway trajectory

# two contributing thimbles (global phase problem)
due to Stokes’ phenomenon (1847)
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Langevin versus Lefschetz

histogram of P(x,y) collected during CL simulation
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Langevin versus Lefschetz

comparison of
Langevin distribution
with thimbles

# thimbles: both saddle points contribute
o CL: unstable fixed point avoided
# no role for second thimble in Langevin
= distributions manifestly different

SEWM14, July 2014 —p. 13



Other (more relevant) models

U(1) model with determinant
7 = / dz P 3% (1 + k cos(x — ip)]

# presence of logdet of interest for CL and thimbles
GA & Stamatescu 08, Mollgaard & Splittorff 13, Greensite 14

SU(2) one-link model with complex 5

7 = /dUe_S(U) S(U) = —gTrU

# solvable with CL in different ways (gauge fixing, gauge
cooling, ...)
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U(1) model with determinant
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& arrows: Langevin drift
# Dblue dots: fixed points

# red squares: diverging drift, det = 0

= new feature: thimbles can end, ImS jumps

3
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U(1) model with determinant
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k=1/2<1

# dots: Langevin trajectory
# Dblue lines: contributing stable thimbles

Langevin distribution follows thimbles
spread in y direction when x > 1
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SU(2) model

special case 6 =3 Berges & Sexty 08

L

degenerate critical point at cos z = i, 9°S(z) = 0
thimbles can be computed analytically

p(u) = — (u £yfu? = (1 - ) tan? u)

tan u

INn terms of
%Tr U = cosz

= u+ 1w

CL distribution
pinched by thimbles
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Summary

exploring the complex plane: thimbles and Langevin

# location of distributions related but not identical
o weight distributions typically different
# repulsive fixed points in Langevin dynamics avoided

thimbles in simple models:

# all contributing thimbles should be included
# residual sign problem is relevant

In field theory both seem less stringent, why?
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