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Electro-weak stability

� As the standard model couplings are run to very high energy the
Higgs self-interaction λ turns negative at some point.

� Since the Higgs mass decreases with decreasing λ this happens
earlier for lighter masses.

� This gives a lower bound on the Higgs mass as a function of energy.

� The meaning of this energy is to give a mass scale of higher
dimension BSM operators.

� The Higgs mass measured at CERN indicates that λ turns negative at
∼ 1010...14GeV.

� Calculations have shown that it may be possible to postpone BSM
physics to the Planck scale and still have a meta-stable EW vacuum
(lifetime� age of the universe).
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Electroweak stability
G. DeGrassi et al. JHEP 1202 098 (2012), JHEP 1312 089 (2013)

The Higgs mass is very near the limit of stability of the SM.
Is this the result of some fine-tuning?
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Is the Higgs mass lower bound relevant?

� Yes and no.

� Clearly BSM physics must exist but

the bound derived within the SM will be altered by the BSM physics.

� With higher dimension operators to stabilize the vacuum, a negative λ
does not imply instability.

� It is thinkable that the lower bound is very low, i.e. regardless of the
typical energy scale of the BSM physics, it might be perfectly viable to
have an almost massless Higgs boson.
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Goals of the presentation:

� To show that by adding higher dimension operators to the Higgs
potential (in a simplified version of the SM) we can significantly alter
the lower mass bound.

� To investigate the finite temperature transition in the presence of a φ6

operator. In particular, can a strong first order transition be generated
to make EW baryogenesis viable?
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Our model: The Higgs-Yukawa model

� The SM Higgs sector is dominated by the Higgs field φ and the top
quark.

� We neglect gauge degrees of freedom and use a model with φ and
fermions.

� Poor man’s version of the Standard Model which nonetheless
captures the nonperturbative Higgs-top interaction.

� The Higgs part of the Lagrangian is given by:

LH = |∂µφ|2 + m2
0 |φ|2 + λ |φ|4 + VBSM(|φ|)
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Fermion content

� Let Ψt = (t ,b)ᵀ = (tL, tR,bL,bR)ᵀ and Ψt ,L = (tL,bL)ᵀ. The top-bottom
Yukawa part of the Lagrangian is then:

Ltb = Ψt /∂Ψt + ybΨt ,LφbR + ytΨt ,Lφ̃tR + h.c. φ̃ = iτ2φ
†

� The other weak SU(2) doublets contribute analogously to the
Lagrangian and are all included in our model.
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Using the symmetries

� Anticipating spontaneous symmetry breaking (SSB) we parametrize
the Higgs field as:

φ(x) =

(
g2(x) + ig1(x)

v + h(x)− ig3(x)

)
〈φ〉 =

(
0
v

)

� Because of SU(2) invariance the fermion determinant can only
depend on |φ(x)|2 = (v + h(x))2 + g1(x)2 + g2(x)2 + g3(x)2:

LF =
∑
f ,f ′

Ψf M
(
|φ|2

)
ff ′

Ψf ′ ⇒ LogDet
(

M
(
|φ|2

))
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Lattice action

� We first discretize the Higgs field:

LLatt =− κ
∑
µ

φ̂†x φ̂x+µ̂ + h.c.+
∣∣∣φ̂x

∣∣∣2 + λ̂

(∣∣∣φ̂x

∣∣∣2 − 1
)2

+ VBSM(
∣∣∣φ̂x

∣∣∣) + LogDet

(
M
(∣∣∣φ̂∣∣∣2))

with dimensionless variables

aφ(x) =
√

2κφ̂x , (am0)2 =
1− 2λ̂
κ
−8, λ̂ = 4κ2λ, v̂ =

av√
2κ
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BSM potential

� In general one has an infinite sum of higher dimension operators.

� The simplest choice is to keep only the φ6 operator.

� Assuming that the typical scale of the BSM physics is MBSM, φ6 will be
suppressed by a scale separation ∼ (v/MBSM)2 or ∼ (E/MBSM)2.

� On the computer we rescale the Higgs field with the lattice spacing a
leading to:

a4VBSM

(∣∣∣φ̂∣∣∣) = (2κ)3 1
(aMBSM)2

∣∣∣φ̂∣∣∣6 ≡ (2κ)3λ6

∣∣∣φ̂∣∣∣6
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Implications of the new potential

� The φ6 operator ensures that the action is bounded for any value of
the quartic coupling λ4.

� In particular, λ4 can be negative which might lead to a lower Higgs
boson mass.

� The model is no longer renormalizable. We choose a cutoff a−1 above
all other energy scales, ie. (aMBSM) = 1/3. Results change little upon
decreasing the lattice spacing further.
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Setting the scale

� On the lattice we measure all observables in units of the lattice
spacing a.

� We determine a by demanding: v = v̂
a
√

2κ
= 246 GeV.

� We also fix the Yukawa couplings to the fermion tree level masses:
yf = mf

246GeV .
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Extended Mean Field Theory (EMFT)
OA, P. de Forcrand, P. Werner and A. Georges Phys. Rev. D 88 125006 (2013) [arXiv:1305.7136]

OA, P. de Forcrand, P. Werner and A. Georges [arXiv:1405.6613]

� We solve the model approximately by using an extended version of
Mean Field Theory which takes also quadratic fluctuations into
account.

� The original 4d problem reduces to a 0d problem with some
self-consistency conditions which can be solved at a very low
computational cost.

� EMFT can be formulated in any finite or infinite box which gives
access to finite volume and finite temperature effects.
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Setup

� EMFT yields an implicit action where expectation value and
propagation need to be solved for self-consistently.

� We use a root solver to find fixed points where the input, φext, equals
the output, 〈φ〉.
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Bench-marking the approximation

� EMFT has already proved to be very accurate on φ4 models.
� To check that the fermions are treated correctly we compare to full

Monte Carlo simulations of the Higgs-Yukawa model [1].
� The results are very encouraging (see next slide).
� Due to the large scale separation MBSM � v and the Goldstone

bosons, Monte Carlo simulations suffers from prohibitive finite size
effects. EMFT does not have this problem.

� Note that the Monte Carlo simulation suffers from a “sign problem”
unless the fermions are mass-degenerate whereas EMFT can handle
the physical case.

[1] P. Hegde, K. Jansen, C. -J. D. Lin and A. Nagy PoS LATT13 [arXiv:1310.6260]
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λ6 = 0.1, “perturbative”
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λ6 = 1, “non-perturbative”
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Because of massless Goldstone bosons, the finite volume corrections
are power like→ major problem for Monte Carlo simulations.
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Lowering the Higgs mass bound

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

φ
e
x
t
−
〈φ
〉[
G
eV

]

φext [GeV]

MBSM = 5 TeV

0 246

−10−4

0

10−4

mHiggs = 60 GeV
mHiggs = 40 GeV
mHiggs = 20 GeV
mHiggs = 10 GeV

Lausanne, July 18, 2014 SEWM 2014 18



Lowering the Higgs mass bound

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000

φ
e
x
t
−
〈φ
〉[
G
eV

]

φext [GeV]

MBSM = 10 TeV

0 246

−10−5

0

10−5

mHiggs = 60 GeV
mHiggs = 40 GeV
mHiggs = 20 GeV
mHiggs = 10 GeV

Lausanne, July 18, 2014 SEWM 2014 18



Lowering the Higgs mass bound
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Lowering the Higgs mass bound
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Finite temperature transition
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Conclusions

� Higher dimension operators can stabilize the Higgs potential even at
negative quartic couplings.

� This allows for a lowering of the stability bound of the Higgs boson
mass, presumably all the way down to zero.

� A small Higgs mass does not imply a small BSM scale.
� Within a generic BSM model, the Higgs mass of 125 GeV does not

appear as fine-tuned.
� The addition of the φ6 operator is not enough to make the finite

temperature phase transition first order in our model but in the full SM
- with gauge fields- it can [1].

[1] C. Grojean, G. Servant, J. Wells Phys. Rev. D 71 036001 (2005)
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Thank you for your attention!
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Extended Mean Field Theory (EMFT)

� We assume small fluctuations around the vacuum expectation value
(vev).

Φx = (ĥx , ĝ1,x , ĝ2,x , ĝ3,x )ᵀ+(v̂ ,0,0,0)ᵀ ≡ δΦᵀ
x +〈Φ〉ᵀ ,

� The hopping term can be expressed as:

∆S = −2κ
∑
±µ

δΦᵀ
0δΦµ − 4dκv̂ ĥ0.
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� We can integrate out all fields except Φ0 at the cost of new couplings,
cpΦp

0, p ≥ 2.

� Truncating at second order is enough to capture most of the
dynamics, cf. mass renormalization.

� The effective action becomes:

SEMFT =Φᵀ
0(I4 −∆)Φ0 + λ̂

(
‖Φ0‖2 − 1

)2
− 2v̂(v̂ + ĥ)(2dκ−∆1)

+ TrLog (M (‖Φ0‖)) + VBSM (‖Φ0‖)

� Where ∆ = diag (∆1,∆2,∆2,∆2) emulates propagation in the
effective bath.
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Self-consistency equations

� We have introduced three unknowns in the action so we need three
self-consistency conditions:

1.
〈
Φᵀ

0

〉
= (v̂ ,0,0,0)ᵀ

2. 2
〈

ĥ2
0

〉
c

=

∫
d4p

(2π)4
1

1
2〈ĥ2

0〉c
+ ∆1 − 2κ

∑
µ cos(pµ)

3. 2
〈
ĝ2

i,0
〉

=

∫
d4p

(2π)4
1

1
2〈ĝ2

i,0〉 + ∆2 − 2κ
∑
µ cos(pµ)
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The fermion determinant

� In the EMFT approximation the fermions see the uniform field
‖Φ0‖ =

√
(v̂ + ĥ0)2 + ĝ2

1,0 + ĝ2
2,0 + ĝ2

3,0 ⇒ the fermion matrix is
diagonal in Fourier space.

� We can choose a basis for the determinant where the different flavors
decouple:

M (‖Φ0‖)ff ′ →
(
/∂ + yf

√
2κ‖Φ0‖

)
δff ′

� Fermions discretized using the Neuberger overlap operator which
respects chiral symmetry up to O(a2) corrections.
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� The fermion matrix becomes:

M(ov)
f = D(ov)+yf

√
2κ‖Φ‖

(
I4 −

1
2

D(ov)
)
.

� Since ‖Φ‖ is constant we can calculate the TrLog efficiently in Fourier
space:

TrLog
(

M(ov)
f

)
= 2
∫

d4p
(2π)4 log

∣∣∣∣ν(p) + yf
√

2κ‖Φ0‖
(

1− ν(p)

2

)∣∣∣∣2
ν(p) = 1 +

i
√

p̃2 + 1
2 p̂2 − 1√

p̃2 +
(1

2 p̂2 − 1
)2

p̃2 =
∑
µ

sin2(pµ), p̂2 = 4
∑
µ

sin2
(pµ

2

)
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EW vacuum
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