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Relativistic Heavy-lon Collisions: Investigation of the properties of the produced Quark-Gluon
Plasma requires a thorough understanding of inherently dynamical processes:

Tests and Applications

Resolution test: Delta-peak spectral functions from mock data

Spectral peaks encode vital information on physical observables, be it particle masses and their decay widths
Global bulk evolution characterized by shear and bulk viscosities or more abstract quantities, such as the real- and imaginary part of the heavy quark potential. Here we test

our reconstruction method on a simple spectrum of three delta peaks and compare to MEM.
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Spectral functions: A bridge between the Euclidean and Minkowski time domain ¥

Both methods are supplied N_=32 ideal datapoints perturbed by Gaussian noise, corresponding to errors
D(7) = J dwK(t,w)p(w) = D{)= J dw K(it, w) p(w) of AD/D=1073 (red) 10 (green) 10~ (blue). Note the absence of artificial peaks with the new method.

Transport coefficients: Extract the peak at zero frequency in the normalized spectrum
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Fortunately the complete spectral function from Euclidean time usually not required: . [5 coshlw(t—21B)]  15% deviation @ AD/D=10"*
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V= [ dwei®tp(w) &= lim == The heavy quark potential from HTL Euclidean correlators
Heavy quark potential from position and Transport coefficients from slope at origin Challenging for spectral reconstruction since functional form of spectral peak needs to be faithfully
width of lowest lying peak

reconstructed, i.e. not only position but also width of a skewed Loretzian is required.
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new method (BR) from 32 and 128 points with Gaussian noise added. Shown are two distances, r=0.06fm and
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Reconstruction of the HTL (T=2.33T) potential based on the Euclidean HTL line correlator V,
The Bayesian strategy: Incorporation of prior information (I) allows regularization of an Re[V](r) requires 10, Im[V](R) requires 10~ errors for a reliable determination.
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result from dimension of p (3) smoothness of p, where data does not imprint peaks Spectra based on Wilson Line correlators in Coulomb gauge to avoid cusp divergences in the Wilson loop
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This new prior distribution is strictly concave and exhibits the same quadratic behavior around the CO N CI usion

maximum p=m as the Shanon-Jaynes entropy S,. Hence the uniqueness of its maximum can be , , .
established analogously to the MEM. In the case where p,,m, << 1/a or p,<< m,, their contribution to S and We presented a new approach to the reconstruction of spectral functions that contains three

to the variation 6S/6p is not suppressed, thus we avoid the asymptotic flatness inherent in Sq,. key differences compared to the standard MEM. A novel scale independent prior functional S

Proof of uniqueness for Sg; in: M. Asakawa, T. Hatsuda and Y. Nakahara, Prog. Part. Nucl. Phys. 46, 459 (2001); as We” as explicit integration Of the hyperparameter a are Comb|ned W|th the LBFGS
Hyperparameter a is integrated out explicitly using no additional prior knowledge: P[a]=1 algorithm to access the full N, dimensional search space.

PlolD. 1] o P[Dlp. I oC docPlolL o O oD, 1] 0 Using mock data analyses based on leading order hard thermal loop resummed perturbation
oD, I] o, o o PlplI, o 50 pIL, e = theory we showed that the extraction of the in-medium heavy quark potential from spectral
functions of Wilson Loops or Wilson Line correlators is viable. The determination of the

Bayesian solution: Maximum of the a independent posterior (point estimate) imaginary part, i.e. spectral widths, requires however high precision data and a relatively

In practice we deploy the quasi-newton LBFGS algorithm, which allows us to approach 8P[p|D,m]/8p=0 by large number of datapoints. Current estimates for Re[V] and Im[V] from actual quenched

varying each of the N ,~1000 parameters p, individually. Note that in contrast to the MEM with S, now lattice QCD simulations were presented.

without flat directions, we successfully locate the global extremum of P[p|D,m] and do not need to stop
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