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Hard probes in heavy ion collisions

Hard particle production in nucleus–nucleus collisions (RHIC, LHC)
can be modified by the surrounding medium (‘quark–gluon plasma’)

The ensemble of these modifications : ‘jet quenching’
B energy loss, transverse momentum broadening, di–jet asymmetry ...

B cf. the review talks by Federico Antinori and Jean–Paul Blaizot

Assuming the coupling to be weak, can one understand these
phenomena from first principles (perturbative QCD) ?
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A ubiquitous transport coefficient

In pQCD, all such phenomena find a common denominator:
B incoherent multiple scattering off the medium constituents

L

k

random kicks leading to Brownian motion in k⊥ : 〈k2⊥〉 ' q̂∆t

acceleration causing medium induced radiation (BDMPSZ, LPM)

multiple branchings leading to many soft quanta at large angles

At leading order in αs, only one transport coefficient :
B the jet quenching parameter q̂
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L

k

random kicks leading to Brownian motion in k⊥ : 〈k2⊥〉 ' q̂∆t

acceleration causing medium induced radiation (BDMPSZ, LPM)

multiple branchings leading to many soft quanta at large angles

Will this universality survive the quantum (‘radiative’) corrections ?
B if so, how will these corrections affect the value of q̂ ?
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Transverse momentum broadening

An energetic quark acquires a transverse momentum p⊥ via collisions
in the medium, after propagating over a distance L

Quark energy E � typical p⊥ =⇒ small deflection angle θ � 1

The quark transverse position is unchanged: eikonal approximation

V (x) = P exp

{
ig

∫
dx+A−a (x+,x)ta

}
The quark is a ‘right mover’ : x+ ≡ (t+ z)/

√
2 '
√

2t is its LC time
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Transverse momentum broadening (2)

Direct amplitude (DA) × Complex conjugate amplitude (CCA) :

y
p

x
p  = 0

8L0x  =+ 0L

The p⊥–spectrum of the quark after crossing the medium (r = x− y)

dN

d2p
=

1

(2π)2

∫
r

e−ip·r〈Sxy〉 , Sxy ≡
1

Nc
tr
(
VxV

†
y

)
Average over A−a (the distribution of the medium constituents)
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Dipole picture

Formally, 〈Sxy〉 is the average S–matrix for a qq̄ color dipole

L0x  =+

x

y
r

B ‘the quark at x’ : the physical quark in the DA

B ‘the antiquark at y’ : the physical quark in the CCA

Quark cross–section ←→ dipole amplitude

The dipole S–matrix also controls the rate for medium–induced gluon
branching (energy loss, jet fragmentation)
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The tree–level approximation

At zeroth order, 〈Sxy〉 is fully specified by one parameter: q̂0

Weakly coupled medium ⇒ quasi independent color charges

B Gaussian distribution for the color fields A−, local in time (x+)

B multiple scattering series exponentiates (Glauber, McLerran–Venugopalan)

〈Sxy〉 = e−T2g ' exp

{
−1

4
Lq̂0(1/r2) r2

}

B T2g : scattering amplitude via two–gluon exchange (single scattering)
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The tree–level jet quenching parameter

q̂0(Q2) ≡ n
∫ Q2

d2k

(2π)2
k2 g4CF

(k2 +m2
D)2
' 4πα2

sCFn ln
Q2

m2
D

B n : density of the medium constituents; mD : Debye mass

The cross–section for p⊥–broadening :

dN

d2p
=

1

(2π)2

∫
r

e−ip·r e−
1
4
Lq̂0(1/r2) r2 ' 1

πQ2
s

e−p
2/Q2

s

The saturation momentum : exponent of O(1) when r ∼ 1/Qs

Q2
s = Lq̂0(Q2

s) = 4πα2
sCFnL ln

Q2
s

m2
D

∝ L lnL

The physical jet quenching parameter : q̂0(Q2
s) ∝ lnL

N.B. p⊥–broadening probes the dipole S–matrix near unitarity
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Radiative corrections to p⊥–broadening

The quark ‘evolves’ by emitting a gluon (‘real’ or ‘virtual’)

0 L 0L

k

x

8

y

y+ x+ x+ y+

0 L 0Lx+

k

x
8

y

y+

The ‘evolution’ gluon is not measured: one integrates over ω and k

All partons undergo multiple scattering: non–linear evolution
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Dipole evolution

Alternatively depicted as the evolution of the dipole S–matrix:

0 L

x

y

k

y+ x+

0 L

x

y
k

y+ x+

Exchange graphs between q and q̄, or self–energy graphs

This evolution needs not be restricted to a change in q̂
B quantum corrections can change the functional form of 〈S(r)〉
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The phase space

The radiative corrections are suppressed by powers if αs ...
... but can be enhanced by the phase–space for gluon emissions

A ‘naive’ argument: bremsstrahlung in the vacuum

dP =
αsCR
π2

dω

ω

d2k

k2

The emission requires a formation time τ ' 2ω/k2
⊥

For our present purposes, better use τ instead of ω
τ can take all the values between λ ∼ 1/T and L

For a given τ , k2
⊥ should be larger than q̂τ (multiple scattering)

but smaller than Q2
s = q̂L (dipole resolution r ∼ 1/Qs)

∆P (L) =
αsCR
π

∫ L

λ

dτ

τ

∫ q̂L

q̂τ

dk2
⊥

k2
⊥

=
αsCR
π

1

2
ln2 L

λ

B large, double–logarithmic, correction

B ∆P (L) ∼ O(1) for L = 5 fm, T = 500 MeV, αs = 0.3
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Non–linear evolution

The previous argument is ‘naive’ as it ignores multiple scattering

Non–linear evolution is well understood for a shock–wave target

B proton–nucleus collisions at RHIC or the LHC

y

x y x+ +

0 8

z

8ï

y

x

0 8

z

8ï
x+

y+

Lifetime τ = x+ − y+ � target width L =⇒ eikonal approx.

B the ‘evolution’ gluon interacts at a fixed transverse coordinate z

Non–linear equations for correlators of Wilson lines, like 〈Sxy〉 :
Balitsky, JIMWLK, BK (large Nc)

B the functional form of 〈S(r)〉 for r ∼ 1/Qs changes indeed
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Beyond the eikonal approximation

The eikonal approximation fails for gluon emissions inside the medium
B the fluctuation can scatter at any time t during its lifetime: y+ < t < x+

0 L

x

y

k

y+ x+

One needs to consider the transverse diffusion of the gluon fluctuations

B D = 2 + 1 quantum mechanical problem in a random background field

B formal solution in the form of a path integral

Generalization of the JIMWLK (or BK) equations to an extended
target (‘medium’) (E.I., arXiv: 1403.1996)
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The BK equation for jet quenching

x

y
0 L t1 t2 L0t1 t2

r r

∂SL,0(x,y)

∂ω
=

−αsNc

2ω3

∫ L

0
dt2

∫ t2

0
dt1

∂ir1∂
i
r2

∫
r1,r2

[
Dr(t)

]
e

i ω
2

t2∫
t1

dt ṙ2(t)

×
[
SL,t2(x,y)St2,t1(x, r(t))St2,t1(r(t),y)St1,0(x,y) − SL,0(x,y)

]

A functional equation : path integral for r(t)

B likely, too complicated to be solved in the general case

A starting point for controlled approximations
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The single scattering approximation

Only one scattering during the lifetime of the fluctuation

B enhanced by the infrared & collinear ‘divergences’ of bremsstrahlung

St2,t1(z,y) ' e−
1
4

(t2−t1) q̂ B2
⊥

B2
⊥ = |z − y|2 ∼ 1/p2

⊥

t2 − t1 ∼ τ = ω/p2
⊥

0 Lt2tt1

r

B(t)

x
y

z

External dipole ‘near saturation’ : r ∼ 1/Qs =⇒ p2
⊥ . Q2

s = q̂L

Weak scattering ⇐⇒ small exponent =⇒ p2
⊥ � q̂τ

Large longitudinal (energy) phase–space: λ� τ � L

=⇒ large transverse phase–space as well : q̂τ � p2
⊥ � q̂L
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The phase–space for linear evolution

Q2
s(τ) ≡ q̂τ : the saturation line for gluons with lifetime τ

The longitudinal phase–space:

λ� τ � L

... and the transverse one :

q̂τ � p2⊥ � q̂L

... increase equally fast !

p

L

L

2

q

q

q
satu

rati
on lin

e

The conditions for a double logarithmic approximation (DLA)

Very different from the respective evolution for a shock wave:
stronger dependence of Q2

s upon τ (or 1/x)

B see the talks by D. Triantafyllopoulos and K. Kutak
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2
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SW
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The double logarithmic approximation

To DLA, the dipole S–matrix SL(r) preserves the same functional
form as at tree–level, but with a renormalized q̂ :

SL(r) ' exp

{
− 1

4
Lq̂(L) r2

}
Universality : q̂0(L) → q̂(L) in all the quantities related to S
B p⊥–broadening, radiative energy loss, jet fragmentation ...

BK equation reduces to a relatively simple, linear, equation for q̂(L)

q̂(L) = q̂0 + ᾱ

∫ L

λ

dτ

τ

∫ q̂L

q̂τ

dp2
⊥

p2
⊥
q̂(τ, p2

⊥)

B Liou, Mueller, Wu (arXiv: 1304.7677) [p⊥–broadening]

B Blaizot, Mehtar-Tani (arXiv: 1403.2323) [radiative energy loss]

B E.I. (arXiv: 1403.1996) [evolution of the dipole S–matrix]

SEWM 2014, EPFL, Lausanne Non–linear evolution of jet quenching E. Iancu, July 15, 2014 17 / 27



The double logarithmic approximation

To DLA, the dipole S–matrix SL(r) preserves the same functional
form as at tree–level, but with a renormalized q̂ :

SL(r) ' exp

{
− 1

4
Lq̂(L) r2

}
Universality : q̂0(L) → q̂(L) in all the quantities related to S
B p⊥–broadening, radiative energy loss, jet fragmentation ...

BK equation reduces to a relatively simple, linear, equation for q̂(L)

q̂(L) = q̂0 + ᾱ
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dτ

τ

∫ q̂L

q̂τ

dp2
⊥

p2
⊥
q̂(τ, p2

⊥)

Not the standard DLA limit of the DGLAP or BFKL eqs. : different
boundary conditions (multiple scattering) =⇒ different solutions

Predicts a strong dependence of q̂ upon the medium properties: L, T
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To be continued ...

See the talk by Dionysis Triantafyllopoulos for

details of the solution

running coupling effects

physical implications
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Gluon saturation in the medium

L ~ 1/x+ ï0 L

Multiple scattering is tantamount to gluon saturation in the target

Q2
s(x) is proportional to the width of the region where a gluon (with

longitudinal fraction x) can overlap with its sources

B for a shockwave, this region is the SW width L (fixed and small)

B for a gluon in the medium, this is the gluon longitudinal wavelength:

τ ≡ ∆x+ = 1/p− ∝ 1/x

The x–dependence of Q2
s(x) is further amplified by the evolution
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Fixed coupling

Use logarithmic variables, as standard for BFKL, or BK:

B Y ≡ ln τ
λ (‘rapidity’) and ρ ≡ ln

p2⊥
q̂λ (‘momentum’)

q̂(Y, ρ) = q̂(0) + ᾱ

∫ Y

0
dY1

∫ ρ

Y1

dρ1 q̂(Y1, ρ1) with ρ ≥ Y

Not the standard DLA (as familiar from studies of DGLAP, or BFKL) !

B saturation boundary: ρ1 ≥ Y1 (multiple scattering)

Straightforward to solve via iterations (Liou, Mueller, Wu, 2013)

q̂s(Y ) = q̂(0) I1

(
2
√
ᾱ Y

)
√
ᾱ Y

= q̂(0) e2
√
ᾱ Y

√
4π (
√
ᾱY )3/2

[
1 +O(1/

√
ᾱY )

]
Rapid increase at large Y , with ‘anomalous dimension’ 2

√
ᾱ ∼ 1

The standard artifact of using a fixed coupling (recall e.g. BK)
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Running coupling
(E.I. Triantafyllopoulos, arXiv:1405.3525)

One–loop QCD running coupling : ᾱ → ᾱ(ρ1) ≡ b
ρ1+ρ0

q̂(Y, ρ) = q̂(0) + b

∫ Y

0
dY1

∫ ρ

Y1

dρ1

ρ1 + ρ0
q̂(Y1, ρ1)

The standard DLA with RC (no saturation boundary) would give

q̂(Y, ρ) = q̂(0)I1

(
2
√
bY ln ρ

)
∝ e2

√
bY ln ρ

The actual solution is very different (and much more complicated !)

ln q̂s(Y ) = 4
√
bY − 3|ξ1|(4bY )1/6 +

1

4
lnY + κ+O

(
Y −1/6

)
B ξ1 = −2.338 . . . is the rightmost zero of the Airy function

Surprisingly similar to the asymptotic expansion of lnQ2
s(Y ) for a SW

(Mueller, Triantafyllopoulos, 2003; Munier, Peschanski, 2003)
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Running vs. fixed coupling

The enhancement factor q̂s(Y )/q̂(0) as a function of Y :

1 2 3 4 5
Y

5

10

15

q
`

sHYL�q` H0L

Results are numerically similar up to Y ' 3, but for larger Y , the rise
is much faster with FC
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Running vs. fixed coupling

The enhancement factor q̂s(Y )/q̂(0) as a function of Y :

1 2 3 4 5 6 7
Y

20

40

60

80

100

q
`

sHYL�q` H0LHYL

Interestingly, the phenomenologically relevant values are Y = 2÷ 3
=⇒ enhancement = 2÷ 3 with both FC and RC
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Jet quenching

Nuclear modification factor, di–hadron azimuthal correlations ...

 (GeV/c)
T

p
0 5 10 15 20

AA
R

0.1

1

 = 2.76 TeV (0 - 5%)NNsALICE Pb-Pb  
 = 200 GeV (0 - 5%)NNsSTAR Au-Au  

 = 200 GeV (0 - 10%)NNsPHENIX Au-Au  

 (radians)! "
-1 0 1 2 3 4

)! 
"

 d
N/

d(
TR

IG
G

ER
1/

N
0

0.1

0.2
d+Au FTPC-Au 0-20%

p+p min. bias

Au+Au Central

)!
"

 d
N/

d(
Tr

ig
ge

r
1/

N

Energy loss & transverse momentum broadening by the leading particle
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Di–jet asymmetry

Additional energy imbalance as compared to p+p : 20 to 30 GeV

Compare to the typical scale in the medium: T ∼ 1 GeV (average p⊥)

Detailed studies show that the ‘missing energy’ is carried by
many soft (p⊥ < 2 GeV) hadrons propagating at large angles
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Radiative energy loss (1)

Consider the radiation by a very energetic, eikonal, quark, for simplicity

0 L x+ 0Lx+

k

0x

y+ y+8

Once again, the cross–section can be related to (adjoint) dipoles:

Ly x++0

u x(t)

0x0 =
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Radiative energy loss (2)

Ly x++0

u x(t)

0x0 =

k+ dNg

dk+d2k
∝
∫
x+,y+

∫
x

e−ik ·x Sadj

L,x+(x) ∂ix∂
i
yK(x+,x; y+,y; k+)

∣∣∣
y=0

K(x+,x; y+,y; k+) =

∫
[Du] e

i k+

2

x+∫
y+

dt u̇2(t)

Sadj

x+,y+
(
[u(t)],x0

)
The only difference w.r.t. p⊥–broadening:
the radiated gluon within the 1st dipole (K) is not eikonal anymore
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Radiative energy loss (3)

However, the radiated gluon is relatively hard, k+ ∼ ωc, so the
hierarchy is preserved between radiation and fluctuations: ω � k+

B during the relatively short lifetime t2 − t1 = τ of the fluctuation (ω), the
radiated gluon (k+) can be treated as eikonal

y+ x+t1 2tt

u

z

x

y

u(t)

Then the same arguments apply as in the case of p⊥–broadening:
q̂(0) → q̂τf (k2

⊥) ... in agreement with J.-P. Blaizot and Y. Mehtar-Tani

SEWM 2014, EPFL, Lausanne Non–linear evolution of jet quenching E. Iancu, July 15, 2014 27 / 27


