Imprints of cosmic strings
In late-time scaling scenario

based on: KK, Y. Miyamoto, D. Yamauchi & J. Yokoyama, arXiv:1407.2951

Kohel Kamada .(I)fl-

(EPF Lausanne, JSPS fellow) tcotr roryTECHNIQUE
FEDERALE DE LAUSANNE

e ————

SEWM14, 17/7/2014, EPFL

— —# e

Courtesy H.Qide



L — % - —— [ —

Introduction
Cosmic string...

- Line-like topological defect associated

with symmetry breaking.

- Almost unavoidably produced when GUT breaks
down to the Standard Model gauge group.

C. Ringeval+ ('07)
e.g.) R. Jeannerot+ ('03)
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Study of cosmic string can lead to the understanding of the nature
of the Standard Model and possibly the electroweak and strong forces.
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Cosmic string formation

Kibble mechanism (Kibble *76)

Symmetries can be restored in the early Universe,
and broken down during the course of cosmic history.
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When a symmetry is broken, cosmic strings are formed
if the vacuum manifold is S*or m1(G/H) # 0.

Kibbl hani Kibble 76
(or when U(1) symmetry is broken) iIbble mechanism (Kibble “76)

V4 Higgs field in the vacuum manifold
! distributes randomly at the scale larger
than the correlation scale.

There must be line-like points in the real
space where Higgs field cannot fall
down to the vacuum, |®| =0, from the
topological reason. (At that point, the
energy density remains high. )

Such field configuration is topologically
stable and hence we call it "topological
defects”.
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Scaling behavior of the cosmic string network ipble 's5)

The energy density of cosmic strings decays as a™~

and hence they may overclose the Universe if they are
produced in the early Universe...
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However, cosmic string network forms loops when they
Intersect, and hence I1ts characteristic scale remains

constant relative to the Hubble length.
-> They do not overclose the Universe!

They are still in our Universe, and it is possible to observe
their traces in CMB, GWB, or cosmic rays.
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Traces of cosmic strings in CMB (Albrecht+ '97: Seljak+ '97)

cosmic strings between the last scattering surface and us
generates the fluctuation of CMB temperature/polarization.

From slide of T.Suyama
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Traces of cosmic strings in CMB (Albrecht+ '97: Seljak+ '97)

cosmic strings between the last scattering surfaces and us
generates the fluctuation of CMB temperature/polarization.

From slide of T.Suyama

Dark Energy
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temperature polarization
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Lizarraga+, 1403.4924

From WMAP homepage
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Traces of cosmic strings in CMB (Albrecht+ '97: Seljak+ '97)

cosmic strings between the last scattering surfaces and us
generates the fluctuation of CMB temperature/polarization.

From slide of T.Suyama
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Lizarraga+, 1403.4924

From WMAP homepage

Planck temperature observation gives the strong constraint
on the cosmic string tension; G,u 5 (1 o 3) X 10_7 (Planck collaboration, 1303.5085)

Related to the symmetry breaking scale. # There are uncertainties in the model of cosmic string.
#CMB can see them only through gravity.
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Delayed scaling scenario

(Lazarides+ ’84; Vishniac+ '87; Yokoyama, '88; KK+ '12)
The discussion for the effect on CMB is based on the assumption that

the cosmic string entered the scaling regime well before recombination.
-> Observational predictions are very generic.

It is true for the case of hybrid inflation or thermal-mass triggered
phase transition.
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Delayed scaling scenario

(Lazarides+ ’84; Vishniac+ '87; Yokoyama, '88; KK+ '12)

The discussion for the effect on CMB is based on the assumption that
the cosmic string entered the scaling regime well before recombination.

-> Observational predictions are very generic.
It is true for the case of hybrid inflation or thermal-mass triggered
phase transition.
However, it is possible for the phase transition to take place
DURING inflation, since the symmetry is naturally restored during
inflation due to the “Hubble-induced” mass, ¢c*H*¢* coming from

- non minimal coupling to gravity: f¢2R

- direct coupling between inflaton and Higgs: K’¢i2nf¢2

- gravitational coupling in SUSY F-term inflation: el®"/Mei1V;, ¢
- and so on...

It the Hubble-induced mass and zero-temp.
mass are comparable and Hubble parameter
decreases relatively largely, cosmic string
can be formed during inflation.

. ‘<'58=>f —




The characteristic length, which would be the Hubble length at CS
formation, gets exponentially long at the end of inflation.
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At the end of inflation, CSs are distributed at the superhorizon scales,
and characteristic length evolves just o a after that.
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Adopting velocity-dependent one-scale model (approximation),
we find the typical evolution of the correlation length of CS  (Martins+ '96, '00)
network and how the system would approach the scaling regime.

\U evolution of the correlation length
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It takes a few orders of redshift for the system to enter the scaling
regime after the characteristic length comes to subhorizon scales.
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String-induced CMB temperature fluctuations

temperature fluctuations from cosmic strings (Gu=3x10"")
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The position of the peak is determined by the time when the network
enters the scaling regime.
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String-induced CMB polarization fluctuations

B—mode polarizations from cosmic strings (Gu=3x10"")
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The position of the peak is determined by recombination and
reionization. Their amplitude is determined by the number of strings
at that time.
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Constraint on the string tension
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Summary
- Cosmic strings are key ingredients for both cosmology and
high energy physics.
- Their formation during inflation is an interesting possibllity.
- The string network enters scaling regime later in this case,
which can reduce the high multipole moment of both CMB
temperature and polarization fluctuations.

Open Issues
- We assumed several idealization, such as one-scale model.
-> need numerical simulations.
- We gave just qualitative constraints.
-> Combined analysis of Planck temperature/polarization data
and other experiments (including BICEP?2) is needed to

give a precise constraint.
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