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Introduction
Cosmic string... 
- Line-like topological defect associated 
with symmetry breaking.
- Almost unavoidably produced when GUT breaks 
down to the Standard Model gauge group. 

of domain walls, then these would become cosmologically catastrophic; this situation is
forbidden. Another Z2 appears when SO(10) is breaking via GPS [60]; indeed, it is not
SO(10) but its universal covering group Spin(10) which is really broken to [(Spin(6) ×
Spin(4))/Z2](×ZC

2 ) (We remind to the reader that SU(4) × SU(2) × SU(2) ∼ Spin(6) ×
Spin(4).) The quotient Z2 results from the non-trivial intersection of Spin(6) and Spin(4)
and implies the formation of monopoles.

The SSB patterns of GPS and GPS with D-parity down to GSM (Z2) are respectively
given by
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The SSB schemes of SO(10) via the left-right groups with associated defect formation

14

e.g.) R. Jeannerot+ (’03)

cosmic strings

Study of cosmic string can lead to the understanding of the nature
of the Standard Model and possibly the electroweak and strong forces. 

Cosmological evolution of cosmic string loops 3

Figure 1. The (100!c)3 comoving volume in the matter era when the observable
universe occupies one eighth of the box.

respect to the scaling value, whose length is close to the initial correlation length of the
string network. We then discuss the effects induced by the finite numerical resolution

and show that they do not affect the loops scaling regime. Moreover we confirm an

explosive-like formation of very small sized and numerically unresolved loops during the

first stage of the simulations, suggesting that particle production may briefly dominate

the physical evolution of a string network soon after its formation.

Our numerical simulations of strings in FLRW space-time are performed in a fixed

unity comoving volume with periodic boundary conditions. The initial scale factor is
normalised to unity while the initial horizon size is a free parameter which controls the

starting string energy within a horizon volume. During the computations, the comoving

horizon size grows and the evolution is stopped before it fills the whole unit volume for

which the finiteness of the numerical box starts to be felt. We used the Vachaspati–

Vilenkin (VV) initial conditions where the long strings path is essentially a random

C. Ringeval+ (’07)
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Cosmic string formation
Symmetries can be restored in the early Universe, 
and broken down during the course of cosmic history. 

Field space

Symmetry breaking
G → H

Real space

|Φ| = 0 |Φ| = v �= 0

Kibble mechanism (Kibble ’76)



When a symmetry is broken, cosmic strings are formed 
if the vacuum manifold is      or                     . Kibble mechanism (Kibble ’76)

|Φ| = v �= 0

|Φ| = 0

Higgs field in the vacuum manifold 
distributes randomly at the scale larger 
than the correlation scale. 

There must be line-like points in the real 
space where Higgs field cannot fall 
down to the vacuum,           , from the 
topological reason. (At that point, the 
energy density remains high. )

Such field configuration is topologically 
stable and hence we call it “topological 
defects”. 

|Φ| = 0

S1 π1(G/H) �= 0
(or when U(1) symmetry is broken)



Scaling behavior of the cosmic string network

The energy density of cosmic strings decays as
and hence they may overclose the Universe if they are 
produced in the early Universe...

a−2

However, cosmic string network forms loops when they 
intersect, and hence its characteristic scale remains 
constant relative to the Hubble length.  
     -> They do not overclose the Universe!

They are still in our Universe, and it is possible to observe 
their traces in CMB, GWB, or cosmic rays.=>

(Kibble ’85)



Traces of cosmic strings in CMB
cosmic strings between the last scattering surface and us 
generates the fluctuation of CMB temperature/polarization.宇宙ひもによる!"#$の温度揺らぎ$
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FIG. 2: B-mode polarization power spectra for textures (solid
red), semilocal strings (dashed black), and Abelian Higgs
strings (dot-dash blue). All the curves are normalized to make
the temperature spectra match the Planck ! = 10 value. We
see that all these types of topological defects predict similar
shapes in the BICEP2 data range 30 ! ! ! 300, though they
become different for ! > 300.

temperature anisotropies at ! = 10). The scalar B-mode
spectrum is the one inevitably produced by lensing of the
scalar E-modes. In the B-mode channel the string spec-
trum has a quite different shape to the inflationary ten-
sors, peaking towards smaller scales. Figure 2 shows the
B-mode polarization spectra for several classes of defects
(textures, semilocal strings, and Abelian Higgs strings
[21]), showing that they share the same general shape
in the multipole range of interest. We focus on cosmic
strings (using the Abelian Higgs model) as a specific ex-
ample for the remainder of this work.

We first attempt to match the cosmic string B-mode
spectrum to the BICEP2 data, showing the result in
the lower panel of Figure 3. It is clear that the defect
spectrum has the wrong shape, and could only match
the low-multipole data at ! < 100 by substantially over-
predicting the high multipole data (! > 100). In detail,
we see that we need f10 ! 0.3 to generate the necessary
power at ! = 80, which in turn leads to a B-mode ampli-
tude which is a factor of about 5 too large at higher !.
In addition, matching the low-multipole data requires

a fractional contribution to the total TT power spec-
trum at ! = 10 far larger than the maximum allowed
by Planck [13], as shown in the upper panel of Figure
3. We show the defect contributions to the temperature
spectrum as the blue-dotted curves, with the required
contributions to match the B-mode polarization ampli-
tude at ! = 80 as the highest blue-dotted curve (which
corresponds to f10 = 0.3). The solid back line is the best-
fit ΛCDM model, while the grey dashed line shows the
sum of the f10 = 0.3 string prediction with the Planck
best-fit ΛCDM model [22]. The model in which strings
match the B-mode polarization amplitude at ! = 80 is
clearly incompatible with the temperature data. Allow-
ing the parameters of the ΛCDM model to vary does not
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FIG. 3: Temperature (upper panel) and B-mode polarization
(lower panel) power spectra compared to the Planck temper-
ature and the BICEP2 B-mode polarization data. The black
curve in the upper panel is the best-fit ΛCDM model and
the blue dashed lines show the contribution from strings for
f10 = 0.3, 0.15, 0.06, and 0.03. The green-dotted curves in
the lower panel show the combined contribution from strings
and the lensing of the scalar perturbations, for the same val-
ues of f10 as in the upper panel. The lowest dotted curve, for
f10 = 0.03, shows roughly the maximal allowed contribution
from strings to the temperature power spectrum, given the
Planck data. The highest dotted curve, f10 = 0.3, matches
the BICEP2 B-mode polarization at ! = 80. The grey dashed
line is the sum of the f10 = 0.3 string prediction with the
Planck best-fit ΛCDM model. The thin solid red line in the
lower panel shows the combined contribution from the lensing
of scalar perturbations and textures, normalized to match the
! = 80 BICEP2 data point.

help: the 95% upper limit from Planck is around 0.03 to
0.055 depending on the type of defect [13].

We can therefore immediately conclude that defects
do not provide an alternative to inflationary tensors in
explaining the observed data.

We can also use the B-mode data to constrain the con-
tribution of defects to the total anisotropy in a scenario
where both strings and inflationary gravitational waves
contribute significantly, as anticipated in Refs. [23, 24].
In fact, because the strings contribute more substantially
at higher multipoles than inflationary tensors do, a mod-
est admixture of defects improves the fit to the BICEP2
data; as seen in Fig. 4 a string fraction of around 0.04
would explain the excess signal at ! ! 200 (as an alterna-
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FIG. 2: B-mode polarization power spectra for textures (solid
red), semilocal strings (dashed black), and Abelian Higgs
strings (dot-dash blue). All the curves are normalized to make
the temperature spectra match the Planck ! = 10 value. We
see that all these types of topological defects predict similar
shapes in the BICEP2 data range 30 ! ! ! 300, though they
become different for ! > 300.

temperature anisotropies at ! = 10). The scalar B-mode
spectrum is the one inevitably produced by lensing of the
scalar E-modes. In the B-mode channel the string spec-
trum has a quite different shape to the inflationary ten-
sors, peaking towards smaller scales. Figure 2 shows the
B-mode polarization spectra for several classes of defects
(textures, semilocal strings, and Abelian Higgs strings
[21]), showing that they share the same general shape
in the multipole range of interest. We focus on cosmic
strings (using the Abelian Higgs model) as a specific ex-
ample for the remainder of this work.

We first attempt to match the cosmic string B-mode
spectrum to the BICEP2 data, showing the result in
the lower panel of Figure 3. It is clear that the defect
spectrum has the wrong shape, and could only match
the low-multipole data at ! < 100 by substantially over-
predicting the high multipole data (! > 100). In detail,
we see that we need f10 ! 0.3 to generate the necessary
power at ! = 80, which in turn leads to a B-mode ampli-
tude which is a factor of about 5 too large at higher !.
In addition, matching the low-multipole data requires

a fractional contribution to the total TT power spec-
trum at ! = 10 far larger than the maximum allowed
by Planck [13], as shown in the upper panel of Figure
3. We show the defect contributions to the temperature
spectrum as the blue-dotted curves, with the required
contributions to match the B-mode polarization ampli-
tude at ! = 80 as the highest blue-dotted curve (which
corresponds to f10 = 0.3). The solid back line is the best-
fit ΛCDM model, while the grey dashed line shows the
sum of the f10 = 0.3 string prediction with the Planck
best-fit ΛCDM model [22]. The model in which strings
match the B-mode polarization amplitude at ! = 80 is
clearly incompatible with the temperature data. Allow-
ing the parameters of the ΛCDM model to vary does not
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FIG. 3: Temperature (upper panel) and B-mode polarization
(lower panel) power spectra compared to the Planck temper-
ature and the BICEP2 B-mode polarization data. The black
curve in the upper panel is the best-fit ΛCDM model and
the blue dashed lines show the contribution from strings for
f10 = 0.3, 0.15, 0.06, and 0.03. The green-dotted curves in
the lower panel show the combined contribution from strings
and the lensing of the scalar perturbations, for the same val-
ues of f10 as in the upper panel. The lowest dotted curve, for
f10 = 0.03, shows roughly the maximal allowed contribution
from strings to the temperature power spectrum, given the
Planck data. The highest dotted curve, f10 = 0.3, matches
the BICEP2 B-mode polarization at ! = 80. The grey dashed
line is the sum of the f10 = 0.3 string prediction with the
Planck best-fit ΛCDM model. The thin solid red line in the
lower panel shows the combined contribution from the lensing
of scalar perturbations and textures, normalized to match the
! = 80 BICEP2 data point.

help: the 95% upper limit from Planck is around 0.03 to
0.055 depending on the type of defect [13].

We can therefore immediately conclude that defects
do not provide an alternative to inflationary tensors in
explaining the observed data.

We can also use the B-mode data to constrain the con-
tribution of defects to the total anisotropy in a scenario
where both strings and inflationary gravitational waves
contribute significantly, as anticipated in Refs. [23, 24].
In fact, because the strings contribute more substantially
at higher multipoles than inflationary tensors do, a mod-
est admixture of defects improves the fit to the BICEP2
data; as seen in Fig. 4 a string fraction of around 0.04
would explain the excess signal at ! ! 200 (as an alterna-

temperature polarization

Lizarraga+, 1403.4924

(Albrecht+ ’97; Seljak+ ’97)



Traces of cosmic strings in CMB
cosmic strings between the last scattering surfaces and us 
generates the fluctuation of CMB temperature/polarization.宇宙ひもによる!"#$の温度揺らぎ$

!"#$%&'(')$

*+',$-"./$&',0%120$

From slide of T.Suyama
2

101 102 10310−3

10−2

10−1

100

l(l
+1

)C
BB l

/2
!

l

FIG. 2: B-mode polarization power spectra for textures (solid
red), semilocal strings (dashed black), and Abelian Higgs
strings (dot-dash blue). All the curves are normalized to make
the temperature spectra match the Planck ! = 10 value. We
see that all these types of topological defects predict similar
shapes in the BICEP2 data range 30 ! ! ! 300, though they
become different for ! > 300.

temperature anisotropies at ! = 10). The scalar B-mode
spectrum is the one inevitably produced by lensing of the
scalar E-modes. In the B-mode channel the string spec-
trum has a quite different shape to the inflationary ten-
sors, peaking towards smaller scales. Figure 2 shows the
B-mode polarization spectra for several classes of defects
(textures, semilocal strings, and Abelian Higgs strings
[21]), showing that they share the same general shape
in the multipole range of interest. We focus on cosmic
strings (using the Abelian Higgs model) as a specific ex-
ample for the remainder of this work.

We first attempt to match the cosmic string B-mode
spectrum to the BICEP2 data, showing the result in
the lower panel of Figure 3. It is clear that the defect
spectrum has the wrong shape, and could only match
the low-multipole data at ! < 100 by substantially over-
predicting the high multipole data (! > 100). In detail,
we see that we need f10 ! 0.3 to generate the necessary
power at ! = 80, which in turn leads to a B-mode ampli-
tude which is a factor of about 5 too large at higher !.
In addition, matching the low-multipole data requires

a fractional contribution to the total TT power spec-
trum at ! = 10 far larger than the maximum allowed
by Planck [13], as shown in the upper panel of Figure
3. We show the defect contributions to the temperature
spectrum as the blue-dotted curves, with the required
contributions to match the B-mode polarization ampli-
tude at ! = 80 as the highest blue-dotted curve (which
corresponds to f10 = 0.3). The solid back line is the best-
fit ΛCDM model, while the grey dashed line shows the
sum of the f10 = 0.3 string prediction with the Planck
best-fit ΛCDM model [22]. The model in which strings
match the B-mode polarization amplitude at ! = 80 is
clearly incompatible with the temperature data. Allow-
ing the parameters of the ΛCDM model to vary does not
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FIG. 3: Temperature (upper panel) and B-mode polarization
(lower panel) power spectra compared to the Planck temper-
ature and the BICEP2 B-mode polarization data. The black
curve in the upper panel is the best-fit ΛCDM model and
the blue dashed lines show the contribution from strings for
f10 = 0.3, 0.15, 0.06, and 0.03. The green-dotted curves in
the lower panel show the combined contribution from strings
and the lensing of the scalar perturbations, for the same val-
ues of f10 as in the upper panel. The lowest dotted curve, for
f10 = 0.03, shows roughly the maximal allowed contribution
from strings to the temperature power spectrum, given the
Planck data. The highest dotted curve, f10 = 0.3, matches
the BICEP2 B-mode polarization at ! = 80. The grey dashed
line is the sum of the f10 = 0.3 string prediction with the
Planck best-fit ΛCDM model. The thin solid red line in the
lower panel shows the combined contribution from the lensing
of scalar perturbations and textures, normalized to match the
! = 80 BICEP2 data point.

help: the 95% upper limit from Planck is around 0.03 to
0.055 depending on the type of defect [13].

We can therefore immediately conclude that defects
do not provide an alternative to inflationary tensors in
explaining the observed data.

We can also use the B-mode data to constrain the con-
tribution of defects to the total anisotropy in a scenario
where both strings and inflationary gravitational waves
contribute significantly, as anticipated in Refs. [23, 24].
In fact, because the strings contribute more substantially
at higher multipoles than inflationary tensors do, a mod-
est admixture of defects improves the fit to the BICEP2
data; as seen in Fig. 4 a string fraction of around 0.04
would explain the excess signal at ! ! 200 (as an alterna-
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red), semilocal strings (dashed black), and Abelian Higgs
strings (dot-dash blue). All the curves are normalized to make
the temperature spectra match the Planck ! = 10 value. We
see that all these types of topological defects predict similar
shapes in the BICEP2 data range 30 ! ! ! 300, though they
become different for ! > 300.

temperature anisotropies at ! = 10). The scalar B-mode
spectrum is the one inevitably produced by lensing of the
scalar E-modes. In the B-mode channel the string spec-
trum has a quite different shape to the inflationary ten-
sors, peaking towards smaller scales. Figure 2 shows the
B-mode polarization spectra for several classes of defects
(textures, semilocal strings, and Abelian Higgs strings
[21]), showing that they share the same general shape
in the multipole range of interest. We focus on cosmic
strings (using the Abelian Higgs model) as a specific ex-
ample for the remainder of this work.

We first attempt to match the cosmic string B-mode
spectrum to the BICEP2 data, showing the result in
the lower panel of Figure 3. It is clear that the defect
spectrum has the wrong shape, and could only match
the low-multipole data at ! < 100 by substantially over-
predicting the high multipole data (! > 100). In detail,
we see that we need f10 ! 0.3 to generate the necessary
power at ! = 80, which in turn leads to a B-mode ampli-
tude which is a factor of about 5 too large at higher !.
In addition, matching the low-multipole data requires

a fractional contribution to the total TT power spec-
trum at ! = 10 far larger than the maximum allowed
by Planck [13], as shown in the upper panel of Figure
3. We show the defect contributions to the temperature
spectrum as the blue-dotted curves, with the required
contributions to match the B-mode polarization ampli-
tude at ! = 80 as the highest blue-dotted curve (which
corresponds to f10 = 0.3). The solid back line is the best-
fit ΛCDM model, while the grey dashed line shows the
sum of the f10 = 0.3 string prediction with the Planck
best-fit ΛCDM model [22]. The model in which strings
match the B-mode polarization amplitude at ! = 80 is
clearly incompatible with the temperature data. Allow-
ing the parameters of the ΛCDM model to vary does not
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FIG. 3: Temperature (upper panel) and B-mode polarization
(lower panel) power spectra compared to the Planck temper-
ature and the BICEP2 B-mode polarization data. The black
curve in the upper panel is the best-fit ΛCDM model and
the blue dashed lines show the contribution from strings for
f10 = 0.3, 0.15, 0.06, and 0.03. The green-dotted curves in
the lower panel show the combined contribution from strings
and the lensing of the scalar perturbations, for the same val-
ues of f10 as in the upper panel. The lowest dotted curve, for
f10 = 0.03, shows roughly the maximal allowed contribution
from strings to the temperature power spectrum, given the
Planck data. The highest dotted curve, f10 = 0.3, matches
the BICEP2 B-mode polarization at ! = 80. The grey dashed
line is the sum of the f10 = 0.3 string prediction with the
Planck best-fit ΛCDM model. The thin solid red line in the
lower panel shows the combined contribution from the lensing
of scalar perturbations and textures, normalized to match the
! = 80 BICEP2 data point.

help: the 95% upper limit from Planck is around 0.03 to
0.055 depending on the type of defect [13].

We can therefore immediately conclude that defects
do not provide an alternative to inflationary tensors in
explaining the observed data.

We can also use the B-mode data to constrain the con-
tribution of defects to the total anisotropy in a scenario
where both strings and inflationary gravitational waves
contribute significantly, as anticipated in Refs. [23, 24].
In fact, because the strings contribute more substantially
at higher multipoles than inflationary tensors do, a mod-
est admixture of defects improves the fit to the BICEP2
data; as seen in Fig. 4 a string fraction of around 0.04
would explain the excess signal at ! ! 200 (as an alterna-

temperature polarization

Lizarraga+, 1403.4924

Planck temperature observation gives the strong constraint 
on the cosmic string tension; Gµ � (1− 3)× 10−7

# There are uncertainties in the model of cosmic string.Related to the symmetry breaking scale.
#CMB can see them only through gravity. 

(Albrecht+ ’97; Seljak+ ’97)

(Planck collaboration, 1303.5085)



The discussion for the effect on CMB is based on the assumption that 
the cosmic string entered the scaling regime well before recombination.

It is true for the case of hybrid inflation or thermal-mass triggered 
phase transition.

-> Observational predictions are very generic. 

Delayed scaling scenario
(Lazarides+ ’84; Vishniac+ ’87; Yokoyama, ’88; KK+ ’12)



Delayed scaling scenario
The discussion for the effect on CMB is based on the assumption that 
the cosmic string entered the scaling regime well before recombination.

It is true for the case of hybrid inflation or thermal-mass triggered 
phase transition.
However, it is possible for the phase transition to take place 
DURING inflation, since the symmetry is naturally restored during 
inflation due to the “Hubble-induced” mass,             coming from

- non minimal coupling to gravity: 
- direct coupling between inflaton and Higgs: 
- gravitational coupling in SUSY F-term inflation: 
- and so on...
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If the Hubble-induced mass and zero-temp. 
mass are comparable and Hubble parameter 
decreases relatively largely, cosmic string 
can be formed during inflation. 

(Lazarides+ ’84; Vishniac+ ’87; Yokoyama, ’88; KK+ ’12)

-> Observational predictions are very generic. 



The characteristic length, which would be the Hubble length at CS 
formation, gets exponentially long at the end of inflation. 

∼ H
−1
inf

∼ H
−1
inf e

N

At the end of inflation, CSs are distributed at the superhorizon scales, 
and characteristic length evolves just          after that. ∝ a



3

velocity v evolves with the evolution equation,

dv

dt
= (1− v2)

(
k̃

L
− 2Hv

)
, (2)

with k̃ = (2
√
2/π)((1− 8v6)/(1+ 8v6)) being the momentum parameter that represents the acceleration effect due to

the curvature of the strings [18].
Although the velocity-dependent one scale model, characterized by eqs. (1) and (2), is intended to describe evolution

of the string network formed by the conventional Kibble mechanism, these equations also reproduce the initial evolution
of string segments before entering the scaling regime correctly, that is v tends to 0 when L # H−1 and L evolves
in proportion to the scale factor, if we take an appropriate “initial” time with a large initial correlation length
Lini # H−1

ini . Note that the CMB anisotropies induced by cosmic strings are insensitive to their behaviors in the
earlier epoch, and we do not have to follow their evolution from the end of inflation. It is not clear if the one-scale
model, where we assume that the typical curvature of the infinite strings and their mean separation are equal, holds
just after inflation, but we expect it gives a good approximation since the Hubble parameter during inflation is the
unique parameter to determine the string configuration when they are formed. The validity of this model, especially
in the intermediate regime, should nevertheless be investigated through numerical simulations with appropriate initial
conditions, which is beyond the scope of the present paper, and we use (1) and (2) throughout.
Figure 1 shows the typical evolution of the correlation length relative to the Hubble length H−1 with a different

(relatively large) initial correlation length. Hereafter we set z = 2.3 × 107 as initial time. The initial velocity is
set to v = 0 except for the bottom line, which represents the standard, always-scaling case with initial velocity
v = 0.65. While we chose such initial velocities, we also confirmed that the evolution of the correlation length is
almost independent of the initial velocity, since the velocity decreases vanishingly and it loses its initial information
quickly. As mentioned above, when L is larger than the horizon scale, it simply evolves in proportion to a. In terms of
the redshift z, L/H−1 is proportional to z in the radiation dominated era (z # zeq) and z1/2 in the matter dominated
era (z % zeq), where zeq ≈ 3400 is the redshift at the matter-radiation equality. We can also see that it takes a few
orders of redshift for the system to enter the scaling solution completely, which will be important for the observational
signatures. Since this result shows the general feature of the evolution of the correlation length on super horizon scales,
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FIG. 1: The evolution of the correlation length relative to the Hubble length. Compared to the dashed black line which is
proportional to aH, we can easily see that the correlation length evolves proportional to the scale factor on superhorizon scales.

it strongly suggests that even if the correlation length is much larger than the Hubble length just after inflation, the
system gradually approaches the scaling solution and at a relatively late epoch, say z = 103 or later, starts to evolve
in accordance with the scaling rule depending on the epoch of the phase transition during inflation. Note that if the
phase transition takes place when the present horizon scale exited the horizon during inflation, the correlation length
would become the horizon scale again today, since its initial correlation length can be estimated by the horizon scale
at that time. Therefore, cosmic strings formed several e-folds after the current Hubble scale went out of the horizon
during inflation would enter the scaling regime after the recombination3. To evaluate the onset time of scaling, we

3 In principle, the initial correlation length can be calculated from the model parameters, see, e.g., Ref. [9], but it needs specifying the

Adopting velocity-dependent one-scale model (approximation), 
we find the typical evolution of the correlation length of CS 
network and how the system would approach the scaling regime. 
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FIG. 3: Angular power spectra for the temperature/B-mode polarization fluctuations induced by cosmic strings with Gµ =
3 × 10−7. From top (blue dot-dashed) to bottom (red long dashed), we take the initial correlation length (L/H−1)ini =
1.5, 7.5× 103, 4.5× 104 and 1.5× 105. In the left panel, the contributions from inflationary perturbations is shown in the black
solid line, for comparison. In the right panel, the black solid line corresponds to the primordial gravitational waves with r =
0.135 and gravitational lensing. Note that the overall amplitudes scale as (Gµ)2.

high multipoles become significantly small. In this case, since the number density of strings is negligibly small until
the system enters the scaling regime, the position of the peak would be determined by the onset time of scaling and
get lower. Next, we consider why we see only a slight decline at low multipoles. The signal in these scales would be
mainly induced by the cosmic strings at late times. As we can see from Figs. 1 and 2, it takes time for the system to
enter the complete scaling regime and a larger initial correlation length turns to a slightly larger correlation length
and hence slightly smaller number density at later times. As a result, there is only a slight decrease of the amplitude
of the string-induced large-scale signals4.
Here we comment more on the number of cosmic string segments. We define the total number of cosmic strings

between the last scattering surface and us as

∫ rdec

0
4πa3r2(z)dr

1

L3(z)

=

∫ 1100

0

dz

H(z)

4π

(1 + z)3

(∫ z
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L3(z)
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where r(z) is a comoving distance to the surface whose redshift is z,

r(z) =

∫ z

0

1

H(z′)
dz′. (4)

In Fig. 4, we show the dependences on the initial correlation length for the total number and its partial components
which are expected to give dominant contributions to large and small scale fluctuations. We can explicitly see that the
total number of cosmic strings is significantly reduced if we set the initial correlation length very large. We can also
see that for (L/H−1)ini = 103 ∼ 105 the number of string segments around the recombination drastically decreases
whereas those around reionization show milder decreases. This is consistent with the behavior of the power spectrum
of the CMB temperature and polarization fluctuations in Fig. 3. Note that for the large initial correlation length, the
cosmic variance becomes so large that we have to be careful in comparing theoretical, ensemble-averaged quantities
and observations.
With the discussion given above, we then conclude that the constraint on the string tension is relaxed in the delayed

scaling scenario. We show some quantitative constraints in Figs. 5. Solid lines in the left panel of Figs. 5 show the
upper bound on the string tension from the CMB temperature anisotropies, which was obtained from the condition

4 Note that while the number of strings is reduced, each segment contributes to larger multipoles, since we expect the scale of dominant
fluctuations generated by each segment is proportional to L−1. Therefore the delayed scaling effect is not fully determined by the
number density.
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FIG. 3: Angular power spectra for the temperature/B-mode polarization fluctuations induced by cosmic strings with Gµ =
3 × 10−7. From top (blue dot-dashed) to bottom (red long dashed), we take the initial correlation length (L/H−1)ini =
1.5, 7.5× 103, 4.5× 104 and 1.5× 105. In the left panel, the contributions from inflationary perturbations is shown in the black
solid line, for comparison. In the right panel, the black solid line corresponds to the primordial gravitational waves with r =
0.135 and gravitational lensing. Note that the overall amplitudes scale as (Gµ)2.

high multipoles become significantly small. In this case, since the number density of strings is negligibly small until
the system enters the scaling regime, the position of the peak would be determined by the onset time of scaling and
get lower. Next, we consider why we see only a slight decline at low multipoles. The signal in these scales would be
mainly induced by the cosmic strings at late times. As we can see from Figs. 1 and 2, it takes time for the system to
enter the complete scaling regime and a larger initial correlation length turns to a slightly larger correlation length
and hence slightly smaller number density at later times. As a result, there is only a slight decrease of the amplitude
of the string-induced large-scale signals4.
Here we comment more on the number of cosmic string segments. We define the total number of cosmic strings

between the last scattering surface and us as
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0
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where r(z) is a comoving distance to the surface whose redshift is z,

r(z) =

∫ z

0

1

H(z′)
dz′. (4)

In Fig. 4, we show the dependences on the initial correlation length for the total number and its partial components
which are expected to give dominant contributions to large and small scale fluctuations. We can explicitly see that the
total number of cosmic strings is significantly reduced if we set the initial correlation length very large. We can also
see that for (L/H−1)ini = 103 ∼ 105 the number of string segments around the recombination drastically decreases
whereas those around reionization show milder decreases. This is consistent with the behavior of the power spectrum
of the CMB temperature and polarization fluctuations in Fig. 3. Note that for the large initial correlation length, the
cosmic variance becomes so large that we have to be careful in comparing theoretical, ensemble-averaged quantities
and observations.
With the discussion given above, we then conclude that the constraint on the string tension is relaxed in the delayed

scaling scenario. We show some quantitative constraints in Figs. 5. Solid lines in the left panel of Figs. 5 show the
upper bound on the string tension from the CMB temperature anisotropies, which was obtained from the condition

4 Note that while the number of strings is reduced, each segment contributes to larger multipoles, since we expect the scale of dominant
fluctuations generated by each segment is proportional to L−1. Therefore the delayed scaling effect is not fully determined by the
number density.
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Constraint on the string tension
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FIG. 4: The solid black line represents the total number of string segments from the recombination to the present. The dashed
red line, which corresponds the number of strings near the last scattering surface, rapidly decreases as the initial correlation
length becomes large. We also plot the number of strings in the low-redshift region (0 ≤ z ≤ 20) by a dashed blue line. Its
dependence on the initial correlation length is smaller than that of strings being around the recombination.
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FIG. 5: The contour for the constraint on the string tension Gµ as a function of the initial correlation length (L/H−1)ini. In
the left panel, constraints obtained from the condition that the string temperature anisotropies does not exceed 10% of the
primordial one are shown in red (small scale, 2250 ≤ ! ≤ 2450) and blue (large scale, ! ≤ 50). The dashed dark blue (red)
line shows the excluded region from the condition that the string polarizations added to the lensing effect does not exceed the
spectra measured by the BICEP2 (POLARBEAR) data. In the right panel, more conservative limits on Gµ are depicted from
the condition that the temperature and polarization fluctuations generated only by cosmic strings (namely, without inflationary
temperature fluctuations and gravitational waves, and the lensing effect) do not exceed the observed values.

that the string-induced temperature anisotropies would not exceed 10%5 of the values given by the fiducial ΛCDM
model. The red line is the constraint from the small-scale signals whereas the blue line is that from the large-scale
counterparts. We can see that the small-scale signals give a stronger constraint for smaller initial correlation length
and large-scale signals give a stronger one for larger initial correlation length. In particular, for (L/H−1)ini = 104,
the constraint on Gµ is Gµ ! 3.4 × 10−7. Although the resultant constraint would depend on the criterion of the
condition, the generic features are expected to remain the same. For comparison, in the right panel of Fig. 5 we also
show more conservative limits coming from the condition that the temperature fluctuation created solely by cosmic
strings (without inflationary perturbations) would not exceed the observed value by Planck. We can see that although
the quantitative constraints are much different, shapes of the constraint lines do not change significantly. That is, the
constraint from the small scales is severer than that from the large scales for smaller initial correlation length, and

5 The precision of the data provided by Planck is about 10% for ! ! 50 and 2250 ! ! ! 2450.

@z = 2.3× 107
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FIG. 6: B-mode polarization angular power spectra for gravitational lensing with primordial gravitational waves (r = 0.135,
nt = 0, black broken line) and contributions from cosmic strings with delayed scaling (Gµ = 3 × 10−7, (L/H−1)ini = 7500,
green dashed line). If we combine them, the favorable value of r would be smaller than 0.2.

FIG. 7: The contour of the difference of χ2 between the prediction in taking r = 0.2 without strings (χ2 ≈ 15) and that of
cosmic strings with delayed scaling added to that for r = 0.135 based on BICEP2 data. The value of χ2 gets worse in blank
regions.

change. The key is to consider the scenario in which cosmic strings are formed not after but during inflation. Such
strings have exponentially large separation due to the dilution during the subsequent inflation and their evolution is
quite different from that of strings which enter the scaling regime at an earlier epoch.
We have traced typical evolution of the string network by solving the velocity-dependent one-scale model. We have

shown that if we take the relatively large correlation length at the initial time, the correlation length decays as a
rather than 1/H at an earlier epoch and it takes a few orders of redshift for the system to enter the scaling regime
[Figure 1].
Based on the evolution of the network, we have calculated the angular power spectra for the string-induced temper-

ature anisotropies and B-mode polarizations. We found that the large initial correlation length and the consequent
delay of the entrance into scaling regime allows the decrease in the number of strings at an earlier epoch, leading
to the decay of the string signals mainly on higher multipoles [Figure 3]. As a result, the delayed scaling scenario
can relax the constraint on the string tension from the measurements for both the temperature anisotropies and the
B-mode polarizations.
We have further discussed the features of the B-mode signals produced by strings. For the string-only model with

the contribution of the gravitational lensing, it is difficult to explain both BICEP2 and POLARBEAR data fully

∆χ2 ∼ −9 for GW (r=0.2)+GL vs GW (r=0.135)+CS+GL



Summary
- Cosmic strings are key ingredients for both cosmology and
high energy physics. 
- Their formation during inflation is an interesting possibility. 
- The string network enters scaling regime later in this case, 
which can reduce the high multipole moment of both CMB 
temperature and polarization fluctuations. 

Open issues
- We assumed several idealization, such as one-scale model.
    -> need numerical simulations. 
- We gave just qualitative constraints. 
    -> Combined analysis of Planck temperature/polarization data 
        and other experiments (including BICEP2) is needed to 
        give a precise constraint. 


