Approach to equilibrium
in weakly coupled nonabelian plasmas

Aleksi Kurkela,

1401.3751 with M. Abraao York, E. Lu, and G. Moore (McGill)
1405.6318 with E. Lu
1107.5050, 1108.4684, 1209.4091, 1207.1663 with Moore

- **What**: Thermalization in $\alpha \ll 1$ nonabelian gauge theory
- **How**: Using combination of classical field theory and kinetic theory
- **New**: Smooth shift of d.o.f from fields to particles,
 first numerical estimates of bottom-up thermalization
Motivation: Bottom-up thermalization

Anisotropy: $-\log\left(\frac{P_L}{P_T}\right)$

Occupancy:

$f \sim \alpha^{-1}$

$P_L/P_T \sim \alpha^{1/2}$

$f \sim 1$

Thermal

Underoccupied

Radiational breakup $Q_t \sim \alpha^{-13/5}$

Overoccupied

Initial condition $Q_t \sim 1$

Occupancy

- CGC: Initial condition overoccupied

$f(Q) \sim 1/\alpha$

- Expansion makes system underoccupied before thermalizing

$f(Q) \ll 1$

Baier et. al hep-ph/0009237, AK, Moore 1108.4684
Motivation: Bottom-up thermalization

Anisotropy: $-\log\left(\frac{P_L}{P_T}\right)$

Occupancy: $f \sim \alpha^{-1}$

Thermal: $P_L/P_T \sim \alpha^{1/2}$

Underoccupied Overoccupied

Radiational breakup $Q_t \sim \alpha^{-13/5}$

Initial condition $Q_t \sim 1$

Degrees of freedom:
- Overoccupied: Classical field theory, $f \gg 1$
- Underoccupied: (Semi-)classical particles, eff. kinetic theory, $f \ll 1/\alpha$

Full description: Need change of d.o.f. from fields to particles

Overlapping domain of validity $1 \ll f \ll 1/\alpha$: Field-particle duality

Talk by Schlichting
Effective kinetic theory of Arnold, Moore and Yaffe hep-ph/0209353

\[\frac{df}{dt} = -C_{2\leftrightarrow2}[f] - C_{1\leftrightarrow2}[f] \]

- Soft and collinear divergences lead to nontrivial matrix elements
 - soft: screening, Hard-loop; collinear: LPM, ladder resum
- No free parameters; LO accurate in the \(\alpha \rightarrow 0, \alpha f \rightarrow 0 \) limit.
- Used (in linearized form) e.g. for LO transport coefficients in QCD

Arnold, Moore, Yaffe hep-ph/0302165
Outline:

- Isotropic overoccupied system, field-particle duality
- Isotropic underoccupied system, radiational breakup
- Application to Bottom-up of BMSS
What happens if you have too many soft gluons, $f \sim 1/\alpha$.
No longitudinal expansion.

\[\ln(f) \]

Initial condition

\[(e^{\beta p} - 1)^{-1} \]

Thermal

~ 1
What happens if you have **too many soft gluons**, \(f \sim 1/\alpha \).

No longitudinal expansion.

Initial condition

Self-similar cascade

\[p_{\text{max}} \sim t^{1/7} \]

\[f(p_{\text{max}}) \sim t^{-4/7} \]

Thermal

\[(e^{\beta p} - 1)^{-1} \]

\[f \sim 1 \]
Overoccupied cascade

Lattice and Kinetic Thy. Compared

Form of cascade from classical lattice simulation,

\[1 \ll f \lesssim \frac{1}{\alpha} \]

Large-volume: \((Q_a)=0.2, (Q_L)=51.2\), Cont. extr.: down to \((Q_a)=0.1, (Q_L)=25.6\), \(Q_t=2000\), \(\bar{m} = 0.08\)
Overoccupied cascade

Same system, very different degrees of freedom

\[1 \lesssim f \ll 1/\alpha \]

Sensitive to the details of the collision terms
Overoccupied cascade

Thermal equilibrium reached once $f \sim 1$ (or $t \sim \frac{1}{\alpha^2 T}$).
Overoccupied cascade

\[m^2 = \lambda \int_p \frac{f(p)}{p} \]

\[T_* = \frac{\lambda}{2} \int_p f(p) \left[1 + f(p) \right] / m^2 \]

\[\langle p \rangle = \frac{1}{n} \int_p p f(p) \]

Therm. time through the approach of \(\langle p \rangle - \langle p \rangle_T \sim \exp(-t/t_{eq}) \)

\[t_{eq} \approx \frac{72.}{1 + 0.12 \log \lambda^{-1}} \frac{1}{\lambda^2 T}, \quad \lambda = 4\pi N_c \alpha. \]
Underoccupied cascade

Isotropic, underoccupied initial conditions, initial scale $\langle p^2 \rangle = Q^2$

Thermalization time parametrically given by stopping time of jet of momentum Q:

$$t_{eq} \approx \left(\frac{Q}{T} \right)^{1/2} \frac{1}{\lambda^2 T}$$
Underoccupied cascade

Isotropic, underoccupied initial conditions, initial scale $\langle p^2 \rangle = Q^2$

Thermalization time parametrically given by stopping time of jet of momentum Q:

$$t_{eq} \approx \left(\frac{Q}{T} \right)^{1/2} \frac{1}{\lambda^2 T}$$
Underoccupied cascade

Scaling analysis with gaussian and step-cutoff initial conditions

\[
\begin{align*}
\langle p \rangle / \langle p \rangle_T &= \frac{1}{\sqrt{2\pi \langle p \rangle^2}} \\
\langle p^2 \rangle^{1/2} / \langle p \rangle_T &= \frac{1}{\sqrt{2\pi \langle p \rangle^2}} \\
\end{align*}
\]

\[
\lambda = 0.1, 1, 10
\]

\[
T_*/T
\]

\[
\frac{m}{\lambda^{1/2} T}
\]

\[
\begin{align*}
t_{eq} &\approx 34. + 21. \ln\left(\frac{Q}{T}\right) \\
& \quad \times \frac{1}{1 + 0.037 \log \lambda^{-1}} \left(\frac{Q}{T}\right)^{1/2} \frac{1}{\lambda^2 T}
\end{align*}
\]
Connection to heavy-ion physics

Bottom-up thermalization a la BMSS:

- Underoccupied cascade, but expansion reduces the target temperature

\[\tau_{\text{eq}} \sim \frac{1}{\alpha^2 T} \left(\frac{Q}{T} \right)^{1/2}, \quad \epsilon \sim T^4 \sim \frac{Q^4}{\alpha(Qt)} \Rightarrow Qt \sim \alpha^{-13/5} \]

- Rough estimate: replace parametric estimate by the numerical
 - Estimate for energy density \(\epsilon \approx 1.5 d_A Q^4 / \pi \lambda(Qt) \) and \(\alpha = 0.3 \)

\[Qt_{\text{eq}} \approx 1.5 \]

Caveats: Angular dependence, no fermions, definition dependence of \(t_{\text{eq}} \), extrapolation to \(\alpha = 0.3 \)
Connection to heavy-ion physics

Quantifying uncertainties:

- For $\alpha = 0.2$:
 \[Q t_{eq} \approx 4.0 \]

- Varying ϵ by a factor of 2:
 \[Q t_{eq} \approx 2.5 \]

- with $\alpha = 0.2$: $Q t_{eq} \approx 8.0$

- Replacing free streaming $(Q t)^{-1}$ by redshifting $(Q t)^{-4/3}$:
 \[Q t_{eq} < 4 \]

For $Q_s \approx 2 GeV$, corresponds to

\[t_{eq} \approx 0.1 - 1 fm/c \]
Conclusions

- Combination of classical simulations and effective kinetic theory allows to follow the time evolution from highly occupied initial condition to thermal equilibrium.
- Thermalization times for simple systems faster than naively expected.
- Inserting the underoccupied thermalization time to bottom-up thermalization yields a rough estimate for heavy-ion collisions

\[t_{\text{eq}} \lesssim 0.1 \text{ - } 1 \text{fm/c} \]

Outlook

- Proper treatment of expansion and angular dependence.
- Implementation of fermions to kinetic theory.
- Inclusions of plasma unstable modes.
- NLO not inconceivable.
- Applications to jets.

p.s. No sign of BEC
Scaling analysis

\[f_{\text{step}}(p) \propto \Theta(Q_s - p), \quad f_g(p) \propto \exp \left[-\frac{(Q_s - p)^2}{(Q_s/10)^2} \right] \]

\[Q^2 \equiv \int_p f(p)p^2 / \int_p f(p) \]

<table>
<thead>
<tr>
<th>run</th>
<th>(Q/T)</th>
<th>(n_H/n_T)</th>
<th>(\lambda)</th>
<th>init</th>
<th>run</th>
<th>(Q/T)</th>
<th>(n_H/n_T)</th>
<th>(\lambda)</th>
<th>init</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>202.5</td>
<td>0.0134</td>
<td>0.1</td>
<td>g</td>
<td>4</td>
<td>155.1</td>
<td>0.01799</td>
<td>0.1</td>
<td>step</td>
</tr>
<tr>
<td>2</td>
<td>404.9</td>
<td>0.00668</td>
<td>0.1</td>
<td>g</td>
<td>5</td>
<td>310.0</td>
<td>0.00900</td>
<td>0.1</td>
<td>step</td>
</tr>
<tr>
<td>3</td>
<td>809.8</td>
<td>0.00334</td>
<td>0.1</td>
<td>g</td>
<td>6</td>
<td>620.0</td>
<td>0.00450</td>
<td>0.1</td>
<td>step</td>
</tr>
<tr>
<td>7</td>
<td>155.137</td>
<td>0.01799</td>
<td>1.0</td>
<td>step</td>
<td>9</td>
<td>310.0</td>
<td>0.00900</td>
<td>1.0</td>
<td>step</td>
</tr>
<tr>
<td>8</td>
<td>155.137</td>
<td>0.01799</td>
<td>10.0</td>
<td>step</td>
<td>10</td>
<td>310.0</td>
<td>0.00900</td>
<td>10.0</td>
<td>step</td>
</tr>
</tbody>
</table>

In reality many more simulations with varying parameters
Power law from the cascade

- Low scales have time to thermalize: $1/p$
- Non-trivial turbulent Kolmogorov cascade $1/p^{4/3}$, (BEC: $1/p^{3/2}$)?

\[f \sim p^{-4/3} \]
\[f \sim p^{-1} \]

\[m_D = 0.4, Q = 8 \]
\[m_D = 0.2, Q = 76 \]
\[m_D = 0.1, Q = 820 \]
\[m_D = 0.05, Q = 8000 \]
\[m_D = 0.025, Q = 81000 \]
\[m_D = 0.0125, Q = 890000 \]