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• Foldy-Wouthuysen diagonalization	



• Semi-classical equations of motion 	



• EFT approach to the FW diagonalization	



• Chiral transport equation	



• Connection with the anomalous HTL/HDLs



Foldy-Wouthuysen Diagonalization

• The Dirac eq. for a free fermion mixes 
particles and antiparticles d.o.f.	



• FW found a representation where these can 
be separated, through a canonical 
transformation

exact for the free theory

approx. for an interacting theory
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At order O(~0)

HD = UH0U
† = �E + eA0(R)



O(~)At order [Ri, Pj ] = i~�ij

Give a prescription to deal with products of R, P

Keep unitarity; project over the diagonal 

r = P[U(P,R)R U†(P,R)] = R + P(AR) ,

p = P[U(P,R)P U†(P,R)] = P + P(AP )

Rotate all operators 
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Gosselin, Berard and Mohrbach 2007
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In terms of the rotated variables 
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The new variables are non canonical 
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Gauge invariance kept at order of accuracy 



Massless fermions

Semiclassical equations of motion (e.g. right-handed)
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Fermion dispersion law in an B field is modified 
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The chiral transport equation 
recently proposed can be deduced 
simply by computing (for m=0) the 
first quantum corrections to the 

classical eqs. of motion

Semiclassical chiral transport equation 



EFT approach to the FW 
diagonalization - OSEFT

Separating fermion/antifermion d.o.f. within	


 QFT  (HQET, NRQED, LEET, HDET, …)

Describing physics for an almost on-shell m=0 fermion 

qµ = pvµ + kµ

residual momentum
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particle/antiparticle projectors

Integrate out the off-shell antiparticles  

vµ = (1,v)

~ = 1
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This produces the same FW Hamiltonian we obtained 
before for fermions! 

Some advantages: 

NLO corrections easier to obtain

Feynman diagram computations for corrections 	


of different quantities, etc

(on-shell antifermions can be treated equally)

in preparation



Chiral Transport Equation
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Son and Yamamoto, ’12; Stephanov and Yin,  ‘12



One can reproduce the chiral anomaly equation 
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In a thermal plasma: take into account both particles/
antiparticles to correctly reproduce the chiral anomaly

fR,L
p =

1

exp

h
1
T

⇣
p⌥ e~B·p

2p2 � µR,L

⌘i
+ 1

¯fL,R
p =

1

exp

h
1
T

⇣
p± e~B·p

2p2 + µR,L

⌘i
+ 1

@µjµ
A =

e2

2⇡2~2
E · B @µjµ

V = 0



Linear response analysis

Electromagnetic current  obtained in a thermal	


 plasma, with chiral misbalance
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Both pieces (+/-) agree with the non-anomalous/anomalous 

Feynman diagrams computed in the HTL/HDL approximation

Laine, `05
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Kinetic theory provides a framework to treat in a local way also  

the anomalous HTL effects (energy density, etc …)



In the static limit 
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B(x) Chiral Magnetic Effect
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The system exhibits magnetic instabilities 

Joyce and Shaposnikov, `97, Laine, `05;  Akamatsu and Yamamoto, ‘13

Transport theory provides a perfect framework to	


 study the dynamical evolution of the system



Conclusions

• The recent chiral transport equation can be 
obtained after computing the first quantum 
corrections to classical physics (here done 
with a FWD and with a EFT approach)	



• The resulting transport approach describes 
also the anomalous HTL/HDL diagrams, and 
the chiral anomaly	



• In presence of chiral imbalance there are 
magnetic instabilities


