Thermal photons from chemically non-equilibrated QCD medium

Akihiko Monnai
RIKEN BNL Research Center
Nishina Center for Accelerator-Based Science, RIKEN

Strong and Electroweak Matter 2014
17th July 2014, EPFL, Lausanne, Switzerland
Introduction

- **Quark-gluon plasma (QGP):** many-body system of deconfined quarks and gluons

The QGP created in high-energy heavy ion collisions is quantified as a **relativistic fluid** with extremely small viscosity.

Au-Au, Au-Cu (200 GeV) and U-U (193 GeV) at RHIC
Pb-Pb (2.76 TeV) at LHC

It is a QCD phenomenon; what can an **electromagnetic probe** tell us?
Introduction

- Observables of the hot QCD matter

- Electromagnetic probes:
 Jet quenching, heavy quarks:
 Hydrodynamic medium:

- EM transparency:
 Color opaqueness:
 Strong coupling:
Introduction

- Observables of the hot QCD matter

Mini-jets (of hadrons)

Photons & leptons (e.g. γ, e^+e^-)

Hadrons (from hot fluid)

Hadrons (from heavy quarks)

Electromagnetic probes:
Jet quenching, heavy quarks:
Hydrodynamic medium:

EM transparency
Color opaqueness
Strong coupling
Introduction

- Photon emission in heavy ion collisions (low p_T)

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (thermal hadrons)

Photons: Retain information during the medium time evolution
Introduction

- Photon emission in heavy ion collisions (low p_T)

Hadrons:

- Most of information before freeze-out is lost (*thermal* hadrons)

Photons:

- Retain information during the medium time evolution

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism
Introduction

- Photon emission in heavy ion collisions (low p_T)

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (*thermal* hadrons)

Photons: Retain information during the medium time evolution

Thermal photons (hadronic)
- from black-body radiation

Thermal photons (QGP)
- from hard processes

Graphics by AM
Introduction

- Photon emission in heavy ion collisions (low p_T)

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (thermal hadrons)
Photons: Retain information during the medium time evolution
Introduction

- Photon emission in heavy ion collisions (low p_T)

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (thermal hadrons)
Photons: Retain information during the medium time evolution

Decay photons
- from hadronic decay

Thermal photons (hadronic)
- from black-body radiation

Prompt photons
- from hard processes

Graphics by AM

Saturated gluons

z

τ

Hadrons

Freeze-out

Hadronic fluid

QGP fluid

Thermal photons (QGP)

Direct photons

Strong and Electroweak Matter 2014, 17th July 2014, EPFL, Lausanne, Switzerland
Introduction

Elliptic flow v_2

Azimuthal momentum anisotropy

$$v_2(p_T, y) = \frac{\int_0^{2\pi} d\phi_p \cos(2\phi_p - \Psi_2) d\phi_p p_T d\phi p_T dy}{\int_0^{2\pi} d\phi_p d\phi_p p_T d\phi p_T dy}$$

Large v_2 imply strong-medium interaction because spatial anisotropy has to be converted

Hadronic v_2 is well quantified by nearly ideal hydrodynamic models; strongly-coupled QGP

Photons are weakly-coupled and do not intrinsically have v_2

Direct photon v_2 can be finite because of the contribution from thermal photons which are emitted from an anisotropic medium.
Motivation

- Experiments have posed “photon v_2 puzzle”

 - Direct photon v_2 is large; no definite answer so far
 - Hydrodynamic models predict small flow harmonics because of the contribution from earlier stages with little elliptic flow
 - Viscosity? Magnetic field? Pre-equilibrium flow?

 - Direct photon v_3 is also LARGE

 ![Graph showing γ_{dir} vs p_T for PHENIX at QM11](image)

 No centrality dependence

 The enhancement is at least partially due to the properties of the hot medium itself

Talk by S. Mizuno (PHENIX) at QM14
Properties of bulk medium

- **Time-evolution: quark-hadron view**
 - $\tau > 10$ fm/c: Hadronic gas
 - $\tau \sim 1-10$ fm/c: QGP/hadronic fluid
 - $\tau \sim 0-1$ fm/c: Glasma
 - $\tau < 0$ fm/c: Color glass condensate

- **Color glass condensate** (CGC): Colliding nuclei are saturated gluons
- **QGP/hadronic fluid**: Equilibrated quark-gluon plasma

Chemical equilibration does not necessary coincides with thermalization (cf: AM and B. Müller, arXiv: 1403.7310)
Approach of this work

- Fewer number of quarks at the onset of QGP fluid

Equilibrated QGP (small v_2)

- Quark-gluon plasma
- Quark-gluon plasma
- Quark-gluon plasma

Flow anisotropy develops (medium v_2)
Approach of this work

- **Fewer number of quarks** at the onset of QGP fluid

Equilibrated QGP (small v_2)

- Quark-gluon plasma

We consider: Non-equilibrated QGP

- quark-GLUON plasma
- quark-gluon plasma
- Quark-gluon plasma

Flow anisotropy develops (medium v_2)
Approach of this work

- **Fewer number of quarks** at the onset of QGP fluid

Equilibrated QGP (small v_2)
- Quark-gluon plasma
- Quark-gluon plasma
- Quark-gluon plasma

We consider: Non-equilibrated QGP
- quark-GLUON plasma
- quark-gluon plasma
- Quark-gluon plasma

Flow anisotropy develops (medium v_2)

Contribution of later stage becomes large as thermal photons are emitted in the presence of quarks; **photon v_2 can be enhanced**
Approach of this work

- **Fewer number of quarks** at the onset of QGP fluid

Equilibrated QGP (small v_2)
- Quark-gluon plasma
- Quark-gluon plasma
- Quark-gluon plasma

We consider: Non-equilibrated QGP
- quark-GLUON plasma
- quark-gluon plasma
- Quark-gluon plasma

Contribution of later stage becomes large as thermal photons are emitted in the presence of quarks; photon v_2 can be enhanced
Approach of this work

- **Fewer number of quarks** at the onset of QGP fluid

Equilibrated QGP (small v_2)

- Quark-gluon plasma

Non-equilibrated QGP

- Quark-gluon plasma

We consider: Non-equilibrated QGP

- quark-GLUON plasma

- quark-gluon plasma

- Quark-gluon plasma

Contribution of later stage becomes large as thermal photons are emitted in the presence of quarks; photon v_2 can be enhanced.
The model

(2+1)-dimensional ideal hydrodynamic model + rate equations

- The energy-momentum conservation
 \[\partial_{\mu} T_{\mu}^{\nu} + \partial_{\mu} T_{\nu}^{\mu} = 0 \]

- Quark and gluon number changing processes

 \[\partial_{\mu} N_{q}^{\mu} = 2r_{b}n_{q} - 2r_{b} \frac{n_{g}^{eq}}{n_{q}} n_{q}^{2} \]

 \[\partial_{\mu} N_{g}^{\mu} = (r_{a} - r_{b})n_{g} - r_{a} \frac{1}{n_{q}} n_{q}^{2} + r_{b} \frac{n_{g}^{eq}}{n_{q}^{eq}} n_{q}^{2} \]

 \[+ r_{c}n_{q} - r_{c} \frac{1}{n_{q}} n_{q} n_{g} \]

- Reaction rates: \(r_{a}, r_{b}, r_{c} \)
- Parton densities (in equilibrium): \(n_{q}^{(eq)}, n_{g}^{(eq)} \)

Late quark chemical equilibration implies \(r_{b} < r_{a}, r_{c} \)
as the chemical equilibration times are \(\tau_{i} \sim \frac{1}{r_{i}} \)
Input for numerical analyses

- **Hydrodynamic parameters (Initial conditions + fluid properties)**
 - Gluon energy distribution: Kolb, Sollfrank and Heinz, PRC 62, 054909 (2000)
 - Quark energy distribution: 0 GeV/fm³
 - Initial time: 0.4 fm/c
 - Equation of state: Hadron resonance gas (m < 2 GeV) + Parton gas
 - Chemical reaction rates: \(r_i = c_i T \) where \(c_i \) ranges are \(0.2 \leq c_b \leq 2 \) (\(\tau_b \sim 0.5-5 \text{ fm/c} \)) and \(0 \leq c_{a,c} \leq 3 \) (\(\tau_{a,c} \sim 0.3-\infty \text{ fm/c} \))

- **Photon emission rate**
 - \(E \frac{dR^\gamma}{d^3p} = \frac{1}{2} \left(1 - \tanh \frac{T - T_c}{\Delta T} \right) E \frac{dR_{hadron}^\gamma}{d^3p} + \frac{1}{2} \left(1 + \tanh \frac{T - T_c}{\Delta T} \right) E \frac{dR_{QGP}^\gamma}{d^3p} \)
 - Where \(T_c = 0.17 \text{ GeV} \) and \(\Delta T = 0.017 \text{ GeV} \)

 - Turbide, Rapp and Gale, PRC 69, 014903
 - Traxler and Thoma, PRC 53, 1348
Results

- Elliptic flow of thermal photons – c_b dependence

Late quark chemical equilibration ($\tau_{\text{chem}} \sim 1/c_b T$) leads to enhancement of thermal photon v_2

$\tau_{\text{chem}} \sim 2 \text{ fm/c}$ is motivated in an early equilibration model
(AM and B. Müller, arXiv: 1403.7310) $\iff c_b = 0.5$ for $T \sim 0.2 \text{ GeV}$
Results

- **Elliptic flow of thermal photons** – \(c_{a,c} \) dependence

Thermal photon \(v_2 \) is moderately enhanced for **faster** gluon-involved equilibration processes

because quark production in early stages is suppressed due to quicker dampening of gluon overpopulation due to recombination
Summary and outlook

- Thermal photon v_2 from chemically non-equilibrated QGP is investigated
 - Late quark production leads to visible enhancement of v_2, contributing positively to resolution of “photon v_2 problem”
 - Evolution of bulk medium from CGC to QGP is a key
 - Late gluon equilibration slightly reduces v_2
 - Net yield of thermal photons is reduced

- Future prospects include:
 - Introduction of dynamical equation of state, more realistic initial conditions, shear and bulk viscosities
 - Estimation of the contribution from prompt photons
 - Other effects of chemical non-equilibrium, e.g., heavy quarks
Fin

- Merci de votre attention!
- Website: http://tkynt2.phys.s.u-tokyo.ac.jp/~monnai/