

Thermal photons from chemically nonequilibrated QCD medium

Akihiko Monnai
RIKEN BNL Research Center
Nishina Center for Accelerator-Based Science, RIKEN

Strong and Electroweak Matter 2014
17th July 2014, EPFL, Lausanne, Switzerland

 Quark-gluon plasma (QGP): many-body system of deconfined quarks and gluons

Graphics by AM

The QGP created in high-energy heavy ion collisions is quantified as a relativistic fluid with extremely small viscosity

Au-Au, Au-Cu (200 GeV) and U-U (193 GeV) at RHIC Pb-Pb (2.76 TeV) at LHC

Next slide:

Observables of the hot QCD matter

Electromagnetic probes: Jet quenching, heavy quarks: Hydrodynamic medium:

EM transparency color opaqueness strong coupling

Observables of the hot QCD matter

Electromagnetic probes:

Jet quenching, heavy quarks:

Hydrodynamic medium:

EM transparency color opaqueness strong coupling

■ Photon emission in heavy ion collisions (low p_T)

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (thermal hadrons)

Photon emission in heavy ion collisions (low p_{T})

Prompt photons

- from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (thermal hadrons)

Photon emission in heavy ion collisions (low p_{T})

Thermal photons (hadronic) Thermal photons (QGP)

- from black-body radiation

Prompt photons

- from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (thermal hadrons)

■ Photon emission in heavy ion collisions (low p_T)

Decay photons

- from hadronic decay

Thermal photons (hadronic)
Thermal photons (QGP)

- from black-body radiation

Prompt photons

- from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (thermal hadrons)

■ Photon emission in heavy ion collisions (low p_{T})

Decay photons

- from hadronic decay

Thermal photons (hadronic)
Thermal photons (QGP)

- from black-body radiation

Prompt photons

- from hard processes

The hot medium is opaque in terms of QCD; transparent in terms of electromagnetism

Hadrons: Most of information before freeze-out is lost (thermal hadrons)

- Elliptic flow v_2
 - Azimuthal momentum anisotropy

$$v_2(p_T, y) = \frac{\int_0^{2\pi} d\phi_p \cos(2\phi_p - \Psi_2) \frac{dN}{d\phi_p p_T dp_T dy}}{\int_0^{2\pi} d\phi_p \frac{dN}{d\phi_p p_T dp_T dy}}$$

Large v_2 imply strong-medium interaction because spatial anisotropy has to be converted

Motivation

- Experiments have posed "photon v_2 puzzle"
 - \triangleright Direct photon v_2 is large; no definite answer so far
 - Hydrodynamic models predict small flow harmonics because of the contribution from earlier stages with little elliptic flow
 - Viscosity? Magnetic field? Pre-equilibrium flow?

 \triangleright Direct photon v_3 is also LARGE

No centrality dependence

The enhancement is at least partially due to the properties of the hot medium itself

Properties of bulk medium

Time-evolution: quark-hadron view

- $\tau > 10 \text{ fm/c}$: Hadronic gas

 Freeze-out
- τ ~ 1-10 fm/c: QGP/hadronic fluid
 - Equilibration
- \triangleright $\tau \sim 0-1$ fm/c: Glasma
 - "Little bang"
- τ < 0 fm/c: Color glass condensate
- Color glass condensate (CGC): Colliding nuclei are saturated gluons
- QGP/hadronic fluid: Equilibrated quark-gluon plasma
 - Chemical equilibration does not necessary coincides with thermalization (cf: AM and B. Müller, arXiv: 1403.7310)

■ Fewer number of quarks at the onset of QGP fluid

Flow anisotropy develops (medium v_2)

Equilibrated QGP (small v₂)

Quark-gluon plasma

Quark-gluon plasma

Quark-gluon plasma

Fewer number of quarks at the onset of QGP fluid

Flow anisotropy develops (medium v_2)

Equilibrated QGP (small v₂)

Quark-gluon plasma

Quark-gluon plasma

Quark-gluon plasma

We consider: Non-equilibrated QGP

quark-GLUON plasma quark-gluon plasma

Quark-gluon plasma

Fewer number of quarks at the onset of QGP fluid

Flow anisotropy develops (medium v_2)

Equilibrated QGP (small v₂)

Quark-gluon plasma

Quark-gluon plasma

Quark-gluon plasma

We consider: Non-equilibrated QGP

quark-GLUON plasma quark-gluon plasma

Quark-gluon plasma

Contribution of later stage becomes large as thermal photons are emitted in the presence of quarks; photon v₂ can be enhanced

Fewer number of quarks at the onset of QGP fluid

Flow anisotropy develops (medium v_2)

Equilibrated QGP (small v₂)

Quark-gluon plasma

Quark-gluon plasma

Quark-gluon plasma

We consider: Non-equilibrated QGP

quark-GLUON plasma quark-gluon plasma

Quark-gluon plasma

Contribution of later stage becomes large as thermal photons are emitted in the presence of quarks; photon v₂ can be enhanced

Fewer number of quarks at the onset of QGP fluid

Flow anisotropy develops (medium v_2)

Equilibrated QGP (small v₂)

Quark-gluon plasma

Quark-gluon plasma

Quark-gluon plasma

We consider: Non-equilibrated QGP

quark-GLUON plasma quark-gluon plasma

Quark-gluon plasma

Contribution of later stage becomes large as thermal photons are emitted in the presence of quarks; photon v₂ can be enhanced

The model

- (2+1)-dimensional ideal hydrodynamic model + rate equations
- The energy-momentum conservation

$$\partial_{\mu}T_{q}^{\mu\nu} + \partial_{\mu}T_{q}^{\mu\nu} = 0$$

Quark and gluon number changing processes

$$\partial_{\mu}N_{q}^{\mu}=2r_{b}n_{g}-2r_{b}\frac{n_{g}^{\rm eq}}{(n_{q}^{\rm eq})^{2}}n_{q}^{2} \tag{b) quark pair production}$$

$$\partial_{\mu}N_{g}^{\mu}=(r_{a}-r_{b})n_{g}-r_{a}\frac{1}{n_{g}^{\rm eq}}n_{g}^{2}+r_{b}\frac{n_{g}^{\rm eq}}{(n_{q}^{\rm eq})^{2}}n_{q}^{2} \tag{c) gluon emission from a quark}$$

 r_a, r_b, r_c : reaction rates

 $n_q^{(\mathrm{eq})}, n_q^{(\mathrm{eq})}$: parton densities (in equilibrium)

Late quark chemical equilibration implies $r_b < r_a, r_c$ as the chemical equilibration times are $au_i \sim 1/r_i$

(a) gluon splitting

(b) quark pair production

(c) gluon emission from a quark

Input for numerical analyses

- Hydrodynamic parameters (Initial conditions + fluid properties)
 - ▶ Gluon energy distribution: Kolb, Sollfrank and Heinz, PRC 62, 054909 (2000)
 - Quark energy distribution: 0 GeV/fm³
 - ▶ Initial time: 0.4 fm/c
 - Equation of state: Hadron resonance gas (m < 2 GeV) + Parton gas</p>
 - Chemical reaction rates: $r_i=c_iT$ where c_i ranges are $0.2\leq c_b\leq 2$ ($au_b\sim 0.5-5$ fm/c) and $0\leq c_{a,c}\leq 3$ ($au_{a,c}\sim 0.3-\infty$ fm/c)

■ Photon emission rate

$$E\frac{dR^{\gamma}}{d^{3}p} = \frac{1}{2}\left(1 - \tanh\frac{T - T_{c}}{\Delta T}\right)E\frac{dR_{\text{hadron}}^{\gamma}}{d^{3}p} + \frac{1}{2}\left(1 + \tanh\frac{T - T_{c}}{\Delta T}\right)E\frac{dR_{\text{QGP}}^{\gamma}}{d^{3}p}$$

Turbide, Rapp and Gale, PRC 69, 014903

Traxler and Thoma, PRC 53, 1348

Results

where $T_c=0.17~{\rm GeV}$ and $\Delta T=0.017~{\rm GeV}$

Results

■ Elliptic flow of thermal photons – c_b dependence

Late quark chemical equilibration ($\tau_{\rm chem} \sim 1/c_b T$) leads to enhancement of thermal photon v_2

 $au_{
m chem} \sim 2~{
m fm}/c$ is motivated in an early equilibration model (AM and B. Müller, arXiv: 1403.7310) $\iff c_b = 0.5~{
m for}~T \sim 0.2~{
m GeV}$

Results

Results

■ Elliptic flow of thermal photons – c_{a,c} dependence

Thermal photon v_2 is moderately enhanced for faster gluon-involved equilibration processes

because quark production in early stages is suppressed due to quicker dampening of gluon overpopulation due to recombination

Summary and outlook

- Thermal photon v_2 from chemically non-equilibrated QGP is investigated
 - Late quark production leads to visible enhancement of v_2 , contributing positively to resolution of "photon v_2 problem"
 - Evolution of bulk medium from CGC to QGP is a key
 - Late gluon equilibration slightly reduces v_2
 - Net yield of thermal photons is reduced
- Future prospects include:
 - Introduction of dynamical equation of state, more realistic initial conditions, shear and bulk viscosities
 - Estimation of the contribution from prompt photons
 - Other effects of chemical non-equilibrium, e.g., heavy quarks

Fin

- Merci de votre attention!
- Website: http://tkynt2.phys.s.u-tokyo.ac.jp/~monnai/