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Outline

o Brief history of the QCD phase diagram ((¢)¢) as a function of Ny) at
g=occand T=0

o Calculating (¢¢)) diagrammatically

@ Results



Introduction: (¢)) at g = oo

For Nr =0
() #0.
What happens as Nr is increased?
Could the chiral symmetry be restored as we see from simulations at more
moderate coupling strengths?

e Using a 1/d expansion to calculate (7)) analytically [Kluberg-Stern,
Morel, Petersson 1982 find that there is no transition to a phase in
which (i) = 0 for any Nf

@ A mean field analysis based on [Damgaard, Hochberg, Kawamoto
1985] also suggests that the deconfinement critical temperature
T # 0 for all Ny

@ Using Monte-Carlo simulations [de Forcrand, Kim, Unger 2013] find
that a transition does occur, around N ~ 13 staggered fermion
flavours

e Using a diagrammatic approach [Tomboulis 2013] also finds that a
transition occurs, around Ny ~ 10.7 staggered flavours



Simulation results [de Forcrand, Kim, Unger 2013]
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Leading order strong coupling expansion [Tomboulis 2013]
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Calculating the chiral condensate
[Blairon, Brout, Englert and Greensite (1981); Martin and Siu (1983); Tomboulis (2013)]

The chiral condensate is obtained from
- 1
(PY(x)(x)) = —tr [G(x,x)] = —mam log Z .
Integrating out the fermion contribution results in

JDUdet [1+KIM(U)] [[1+KM(U)] K
G(x, %) = [DUdet[1 + K-TM(U)] ’

with

May = 5 |1 Uyt = 1 UL = D)y

N

Kg,l = m_IHNfHNC(;Xy .

The K~ ~ % suggests performing a hopping expansion.



Hopping expansion
Performing a hopping expansion on the fermion determinant leads to

det [1 + Kill\/l] =exptr [Z (1n)n

n=1

(Kfl M)n] ,
which is a sum over closed loops.

Performing a hopping expansion on the contribution from the 2-pt
correlator results in

[[1+K*1I\/l]_1 K*l} zlli(—l)n(KW)"] .
XX m =0 x

which contains all loops that begin and end at site x.

Since tr [odd # of ,'s] = 0, only contributions with n even contribute.
For example, for n =2

XX = 2 Z Z [’Yu%] Oy xtp — UIZ(X - /A‘)‘Syyx—ﬁ]

X [Uu(y)§X7y+9 - U;r(y - 0)5&}’*’9} .

(K]



Extending Martin and Siu
In general the chiral condensate takes the form

tr[G(x,x)] 1 i(—l)L A(L)

NstdR N m —o

where A(L) is the contribution of all diagrams with 2L links which start
and end at x = xg.

A general graph can be built out of irreducible graphs (/) of 2/ links.

Irreducible Reducible _
Irreducible graphs
cannot be separated
into smaller segments
which start and end
X0 at xp.

X0



Irreducible diagrams
Irreducible graphs are built iteratively out of all possible combinations of

smaller segments attached to a “base diagram” a) ﬁ or b) B or ... .
_ H — (1) = 2d
ﬁa@) =24 [1,(1) 2]

/(3) = T Y L(3)

= 2d [1,(2)ay + L(1)%ag]

I(1)
1(2)

. / __2d—-1
with aj = S



Irreducible diagrams

1(4) = + %juz
Y. o

= 1(4) + 15(4)

= 2d [1,(3)a) + 2/,(1)L(2)ag + 1,(1)%ag] — 4d(d — l)ﬁf
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General diagrams

To obtain the contribution of all general diagrams A(L) of a length 2L,

take all combinations of irreducible bits.
L
A(L) =D I(NA(L=1), L>1; A(0)=1,

I=1
where the irreducible graphs can begin with a)ﬁ, or b) B or ... .

N
I(L) = 2dFo(L — 1) — 4d(d — 1)ﬁfF1(L —a) ..
with /(0) = 0. F,(L) represents all possible graphs of length 2L which
start and end on a site on a base diagram of area n.

Fol) = S () la()lalUp )b ki) Ka) - Jol kq)alP BLS
l=12,..,
Ki=4,8,....
S lk=L—1
with Fp(0) = 1. x, = 2.
2d — 1 4(d —1)?
For example: ap = S by = 2d(d— 1)
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Generating all irreducible graphs

The generating function for irreducible graphs, which gives the total
contribution of all irreducible graphs including the mass dependence, is

0 !

1

W, = Z (_4,”2> 1) = W, 4+ Wy + ...,
=0

where W, is all irreducible graphs starting with H' W, is all irreducible

graphs starting with B etc. These take the form

= 2dx
W, =2 W, + byWy + .. =
a dxnz:;[ao 2+ bpWh + .. ] 1—36W2—b6Wb—-.-’

! —4d(d — 1) Nex

N,
Wy = —4d(d—1)ﬁfx4

c

> @ W, + bW, + ]
n=0

(1—31 b/Wb—

with x = —ﬁ. The chiral condensate is then obtained from

olG(xx)] _ 1 <1>

N 1- W,

m
NstNC m—0 m

) )
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Chiral limit m — 0

To work directly in the massless limit it is convenient to introduce the

variables g, = —2”(’1&,
X

g = daga+ dpgb + ...
Taking m — 0, the system of equations

1

aoga + bogp + - ’
N¢
Ne
(2182 + bigp +...)7"
N
N
axgs + bogp + ...)11 ’

)

8a =

&b =

gc:(

can be solved numerically. The chiral condensate is then obtained from
tr[G(x,x)] 2

NNeN,  g°
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Calculating fundamental diagrams

To obtain the total contribution of a diagram, one must include the
following

o A factor %(—N¢Ns)', for a number of overlapping closed internal
loops i,

@ A mass factor (—4—,1”2)'7, for n pairs of links,

o (—1)k for k permutations of v matrices,

@ [...], containing the result obtained by performing the group
integrations,

e {...}, containing the dimensionality of the graph.
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Group integrals [Creutz, Cvitanovic|

Group integrals for overlapping links of the form H , HH
are nonzero VN, = N.

1
/ du U,4UlP = Nag(sg,
SU(N)

+1)
TS /\} -5 (53,55_3 - 5g53) (s0f — 050

The group integral ofw is nonzero for SU(3)

1
Tapjibyy e — ash ash ecf esf
/5 U(N)dU URUPUS Ut = sy (5dac +565d) (5,,5g +5g5,,)

. 1 .
/ dU U7 U U, = Zejime™ .
sU(3) 6
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Fundamental diagrams L = 2,4,6

L=2

—a>{2d}

L=4
[} - crrem [] oo -

L=6

1)}

1)(2d - 3)}
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Fundamental diagrams L =6, N, =3

=3 (—am)” (F1(=Ne)? [3] {4d(d — 1)}

= (— %) (~1%(=Ny) [1] {4d(d — 1)}

O
| = (k) (DA N) [-1] {4d(d — 1))
=
O
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Fundamental diagrams L = 7,8
L=7

= (55) (C1P(=Ne)? ] {12d(d — 1)(2d — 3)}

(~a)” (FLP(=No) || {36(d — 1)(2d - 3)%)

3 (—2)" (CDH(-Np) [ 2] {4d(d - 1))

[
E = 2 (—5)° (~1)*(— N )2 [0] {4d(d — 1)}

= (=) (D) [] fad(d - 1)}
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Fundamental diagrams L > 9

To obtain diagrams for L > 9 we need additional group integrals.

For example, to get to L = 16 for the fundamental and N. = 3 we would
need

/ AU U,LUAUu U Ul
SU(3)
/ du U.LuuS Ut Ul )l
SU(N)
/ dU U,PU4 U U MU U
SU(3)
/ au U.Lu Ut v Ut U
SU(3)
/ du U.LU AU Ut Ul Ut Ul rute
SU(N)

Note that each of the three SU(3) integrals can be transformed into one
of the SU(N) integrals and Levi-Cevita tensors.
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Fundamental diagrams L
/ au U,PuA U U Ul =
SU(3)

/ du Ubulu U u ot
sU@3)

>9

1 .
=~ egmne™ / au vPulutfuimuitul
2 sU(3)

1

jai b laz b,
= Zeimlnlej ! 16kmgng6 22

/ dU U207 0. Ut Ul Ul Ul o
SU(3)

/ du U,Pulu Ut Ut Ul Ut
SU(3)

using [for SU(3)]
U/ =

Ul =

f“’/ du Ubudufu U uib Ul Ut
SU(3)

1 .
Eeimnfjkl U}:m U/Tn )

1 i
Ee;mnefk’ ummum.



PRELIMINARY Results
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Conclusions and outlook

@ We calculated the chiral condensate at g = oo for QCD with Nf
flavours using a truncated diagrammatic expansion and find that
() # 0 at all Ny, though it approaches zero as Nf — oo.

@ The expansion appears to converge for area n = 0 and n = 1 diagrams
@ We calculated group integrals including up to 4 U's and 4 U'’s using
the technique of Young projectors, which can be used to calculate
diagrams up to L = 8 in the fundamental and L = 4 in the adjoint,

symmetric, and antisymmetric.

@ Area n > 1 diagrams have been calculated up to L = 8 but still need
to be included in the calculation of the chiral condensate.

22



Backup slides
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Issue: “diagram overlap problem”

More often than not, overlapping diagrams with nonzero area (n > 0) are
miscounted.

L=38

E|BEIEES ST Eo

however, it gets counted as

() Cvemr ]
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Issue: “diagram overlap problem”

L=12

M = (2™ (-1°(=Ne)3 (0]

for No > 3. For N. = 2 the result is (—%)24 (—1)%(—N¢)3 [—%]

In either case it gets counted as

(—1”1,,2)24(—1>6(—Nf)3 R

One can account for mis-counting at each order
in L in which it appears (starting at L = 8).
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Group integration with Young Projectors

All integrals we need can be converted to the form
/ AU Uy, ™. U, Pr(UT),, % (UT),,, 0
SU(N)

Calculating the direct product of n U’'s (UT's) leads to a direct sum of
representations R (S).

The integral can be obtained from the Young Projectors P of these
representations using

/ dU R,°(§T).9 = i(PR)ad(IPS)Cb ORs -
SU(N) dr
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Young projectors P
Consider for example the integral

h = / dU Uy, f Uazﬁ2 ( Ut )7161 ( UT)’yz .
SU(N)

The direct product N ® N is

[oa] ®[az] = o]0 7.

The Young projectors are thus formed by symmetrising, and
antisymmetrising in a; and ap,

PS BB — % (551 §P2 4 582 551) ’ PAS Bib2 % (551 582 _ §B255

102 a1 a2 [e5ger) Q1o ay o

The resulting integral is

2 P> %ibhpS /31/32+ 2 PAS 0162pAS Bif2

h = N(N +1) 1 Y2 N(N —1) @12 Y2

al o

).
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Additional group integrals

/3 - /SU( ) du Ual’Bl quﬂ2 Ua3B3(UT)’Y161(UT)7262(UT)7363 :

with group decomposition

as ao

ez}l = raooa] 91012 ol 1) nof](15).
results in

L=

S 51025pS  BiBB M 61655amM  ufaB
mpalagagl“ﬁ”mﬂg1“+N(N2 P 13203 p 15265

10203 77273
3 Y 516203 pM  B123
+ N(N )Pa1a2a3 ]P)’Yn'z% + (N2 1)" caas T1Y273

M 0103621pM B1B362 AS 016203 pAS (15283
+ N(N2 1)P041012013 P’Yl’yﬂa + N(N—l)(N—2)]P>Oé10¢2043 P’YWz%

PM 5153521@/\/7 B16382
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Higher dimensional representations

Higher dimensional representations can be written in terms of the
fundamental and anti-fundamental. For example,

Symmetric

(Us)ab = (US)(a1a2)(6162) = (IP)S)CHCQ%72 U‘/l(s1 U’7252 (PS)51526162
1

— (Ualﬁl Uazﬁz + Ualﬂz Ua261>
a, b= 1, cony d5.

Antisymmetric

(UA%)m™ = (U [a100] P72 = (PA%) 00,172 Un, O U, 2 (PA9) 5,122
1

— 5 (Ua151 Ua2,32 _ Ua1’82 Ua251>
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Higher dimensional representations
Adjoint
(UA),P = 27Tx (UtaUTtb) ,
where the t, are fundamental generators of SU(N) satisfying

1

Tr(tatb) = Eéab .
At leading order it is sufficient to use
/ du (UR),b(URT) 75 d5.b.
SU(N) dr
/ AU (UA).(UuM 9 = faacabd
SU(N) da

At the next order in the adjoint it is necessary to consider 3-link integrals.
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3-link adjoint integrals
We are interested in integrals of the form

= 2 () () (1) (), [ AU U U UL U

For example, for n = 3, plugging in the result for the fundamental integral
and simplifying using the identity
1 1 i
tatp = W‘SablN + Edabctc + Efabctc>
results in
N

1
(N2 —1)(N2 — 4)dala2"*3

A
I3 = mfala2a3

db1b2b3 + fb1b2b3 )

where
ifabe = 2Tr ([ta, tp]te)
dape = 2Tr ({ta, tp}tc) -
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Bars and Green integrals [Bars and Green 1979]

Bars and Green calculate integrals of the form

F, = / dU [er(AU)"[ex(AT U]
SU(N)

=Y A,-lfl...A,-nj"(AT)kl’l...(AT)kn’"/ dU U, ™. U, " (UT) R (ut), ke

’:17"'7':177 SU(N)
J15-+3Jn;

15-+5Kn,

15-+5/n

This integral is a generating function for the types of integrals we are
interested in.

One can obtain our integrals by separating out the
At A (AT -+ (AT)g, " from each term in the results of [Bars and
Green 1979, followed by symmetrising all of the i,j pairs, and k,/ pairs.

The benefit of the Young projector technique is that the coefficients of
each term are easier to determine. We have checked our results against
Bars and Green up to n = 4. 32
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