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Introduction

•We investigate QCD with heavy quarks at �nite density

•This is done employing a 3d e�ective theory derived from full lattice QCD with Wilson
fermions by a combined strong coupling and hopping parameter expansions

•The e�ective theory is derived by expanding the gauge action and fermionic determinant
so that the spatial links can be analytically integrated out

Z =

∫
d[Uµ] det[Q] e−SG =

∫
[dU0] e

−Se�, −Se� = log

∫
[dUi] det[Q] e−SG

•The resulting theory depends only on traces of temporal links, called Polyakov Loops:
L~x = TrW~x = Tr

∏Nτ−1
i=0 U0(~x)

•The e�ective theory can be simulated using Monte Carlo Methods at imaginary chemical
potential. Real chemical potential can be simulated using reweighting or the method of
Complex Langevin. Furthermore, leading orders can be calculated analytically.

Strong Coupling Expansion

•The gauge part of the action is expanded via a strong coupling expansion around β = 0 [1]

• In the fundamental character expansion coe�cient, af = u(β) = β
18 + O(β2), the leading

order is a two-point-interaction

S2,0(λ) = λ(u,Nτ)
∑
<ij>

(LiL
∗
j + L∗iLj), λ(u,Nτ) = uNτ [1 + ...]

•The expansion is done up to order β10 and reproduces the decon�nement temperature of
pure Yang-Mills-Theory up to an error of ≈ 10%

Hopping Parameter Expansion

•The Quark determinant is expanded using a hopping expansion around κ = 0 (κ = 1
aMq+8)

•To leading order we get the static quark determinant (not showing antiquarks, which can
be neglected at large µ)

det[Q]stat =
∏
~x

det(1 + cW~x) =
∏
~x

(1 + c TrW~x + c2 TrW ∗
~x + c3)2

•First corrections are interactions between neighboring lattice sites

det[Q]kin =
∏
<ij>

[
1− 2κ2Nτ

Nc
Tr

cWi

1 + cWi
Tr

cWj

1 + cWj

]
+ O(κ4)

• Inclusion of plaquettes from the expansion of the gauge action lead to gauge corrections to
the coupling constants: c(κ, µ,Nτ)→ h(β, κ, µ,Nτ) and

2κ2Nτ

Nc
→ h2(β, κ,Nτ)

•At Nτ = 4 the e�ective theory is valid up to κ ≈ 0.1 and β ≤ βc

Continuum Extrapolation of Baryon Density

• In order to extrapolate to the continuum simulations are performed at several lattice spac-
ings [3]

•The density is expressed in terms of the baryon mass to get a dimensionless quantity

•We then �t �nite lattice spacings corrections starting with O(a) (Wilson fermions)

nlatt(µ)

m3
B

=
ncont(µ)

m3
B

+ A(µ)a + B(µ)a2 + ..., mB = −3 log(2κ)− 18κ2 u

1− u + ...

•Other quantities such as energy density can be extrapolated in the same way
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Figure 1: Left: Values at di�erent lattice spacings are used to extrapolate to the con-
tinuum, the error is taken to be the di�erence between �ts including varying numbers
of values. Right: Continuum values for nB

m3
B
at T = 10MeV for one and two degenerate

�avours [2].

•Errors quickly grow at larger chemical potential due to unphysical saturation on the lattice

•Approaching the continuum with �xed m
T requires Nτ → ∞. Therefore the region of con-

vergence of our model restricts the accessible lattice spacings

•We restrict ourselves to values of κ
2Nτ

Nc
< 0.007 where the contributions of O(κ4) are small,

this means a minimal lattice spacing of a = 0.079fm

Equation of State

•The pressure of the hadron gas can be calculated from the density, P (µ) =
∫ µ

0 dµ
′
nB(µ

′
)
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Figure 2: Continuum extrapolated results for pressure vs chemical potential (left) and
pressure vs baryon density (right) with heavy baryons at T = 10MeV , Nf = 2 [2].

•Pressure stays zero until µB ≈ mB (Silver Blaze property)

Binding Energy

•The formation of nuclear matter in form of baryons requires the existence of a negative
binding energy

•To measure this we �rst calculate the energy density and subtract the rest energy a4nBmB
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Figure 3: Left: Continuum extrapolated energy density for a system of heavy baryons
at T = 10MeV , Nf = 2. Right: Binding energy for the same system [2].

•To leading order the binding energy decays exponentially with the pion mass, ε ∝ e−amπ

Chiral Condensate

•The chiral condensate is calculated as 〈q̄q〉 = −T
V

∂
∂mq

log Z. For vanishing chemical poten-
tial this can be compared to results from full QCD
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Figure 4: Chiral condensate at µB = 0, Nτ = 4

•Full QCD is reproduced up to the decon�nement transition at βc ≈ 5.7 (full QCD) resp.
6.1 (e�ective theory)
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