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Motivation




Semi-analytical approaches to strongly interacting matter
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These approaches (SD-eq, fRG, ...) usually require gauge fixing:
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Extended Landau gauge (eLG)

Alternative approach: find phenomenologically (and hopefully theoretically) motivated
actions that could take into account the existence of Gribov copies

A candidate for such an action is the extended Landau gauge (eLG) action

S-= f{4F§VF§V+aH 59(D,c)? + 0, A% + | mZAaAa}
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Extended Landau gauge (eLG)

Alternative approach: find phenomenologically (and hopefully theoretically) motivated
actions that could take into account the existence of Gribov copies.

A candidate for such an action is the extended Landau gauge (eLG) action
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S= jx‘{ZFE’/FjV +6,uca(Dy,C)a + IhaBHAi + 5rn Afj,AZ}

o It is perturbatively renormalizable.

e A perturbative, calculation of the T = 0 propagators and vertices reproduces lattice data!
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Tissier, Wschebor, Phys.Rev. D84 (2011);
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Pelaez, Tissier, Wschebor, Phys.Rev. D88 (2013) and arXiv:1407.2005.

e |t could result from a gauge fixing procedure which averages over Gribov copies.
(Serreau, Tissier, Phys.Lett. B712 (2012); Serreau, Tissier, Tresmontant, arXiv:1307.6019).



Extended Landau gauge (eLG)

Alternative approach: find phenomenologically (and hopefully theoretically) motivated
actions that could take into account the existence of Gribov copies.

A candidate for such an action is the extended Landau gauge (eLG) action
1 2
S- f{ F, PR, + 0,5%(Duc)? + NP0, A% + S P ALAL )
e It is perturbatively renormalizable. Extra parameter: for SU(3), m~510MeV.

e A perturbative, calculation of the T = 0 propagators and vertices reproduces lattice data!
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Pelaez, Tissier, Wschebor, Phys.Rev. D88 (2013) and arXiv:1407.2005.

e It could result from a gauge fixing procedure which averages over Gribov copies.
(Serreau, Tissier, Phys.Lett. B712 (2012); Serreau, Tissier, Tresmontant, arXiv:1307.6019).



Tests at finite temperature

One loop, finite T, eLG ghost and chromo-magnetic propagators agree well with lattice results:
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Tests at finite temperature

One loop, finite T, eLG ghost and chromo-magnetic propagators agree well with lattice results:
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The eLG fails in reproducing the lattice chromo-electric propagator in the vicinity of the
confinement/deconfinement phase transition:

e could signal a failure of the eLG model
— but similar limitations are observed in other approaches.

e could signal limitations of the use of the LG

— explore “more appropriate” gauges and test whether the corresponding
(IR) extended gauge models are capable to describe the phase transition.



Polyakov loop and center-symmetry breaking

Free-energy F for having an isolated static quark located somewhere
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o if center-symmetry is broken (L) + 0 and F < oo (deconfined phase);

o if center-symmetry is restored (L) = 0 and F = oo (confined phase);



Polyakov loop and center-symmetry breaking

Free-energy F for having an isolated static quark located somewhere
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The Yang-Mills action at finite T is invariant under twisted or center (gauge) transformations
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The lattice predicts a 2nd/1st order breaking of center-symmetry in the SU(2)/SU(3) case.

Confirmed by the functional renormalization group:
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Polyakov loop and center-symmetry breaking

Free-energy F for having an isolated static quark located somewhere
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The Yang-Mills action at finite T is invariant under twisted or center (gauge) transformations

U(B,%) = U(0,X)V  with VeSU(N)Ceme,-:{e’?”k/NIL\k:O,...,N—1}

The lattice predicts a 2nd/1st order breaking of center-symmetry in the SU(2)/SU(3) case.
Confirmed by the functional renormalization group:

Can this physics be captured perturbatively?




Extended background field gauge

Extended background field gauge J




The extended background field gauge

Choose a background 74;’, Fix the gauge according to (D, (A, - A,))? = 0.
In the limit £ — 0, one obtains the Landau-deWitt gauge:

SlA1= [ {5 FauF, + (Bu)(Duc)? + MDA, - A,))7)

Why to consider such a gauge? From S;[A], it is possible to construct i"'[A] such that
o the physics is obtained at the absolute minimum of i"[A];
o center-symmetry is manifest because '[AY] = [[A].



The extended background field gauge

Choose a background A2. Fix the gauge according to (D, (A, - A.))? =
In the limit £ — 0, one obtains the Landau-deWitt gauge:

S3[A] = [X {1 F2,F2, + (D,2)3(D,0)? + ih*(D, (A, - Z\M))a}

Why to consider such a gauge? From S;[A], it is possible to construct '[A] such that

o the physics is obtained at the absolute minimum of i"[A];
e center-symmetry is manifest because "[AY] = [[A].

We upgrade the bakground field gauge to the extended background field gauge (eBFG):
A = S AR - 1 - —
SalAl = [ {3FE i+ (D) (Duc)? + (D (A~ Bu))? + S (AL - A (A2 - A2}

The mass term does not break center symmetry!

Feynman rules?



Feynman rules: simplifying remarks

We are interested in thermodynamical properties:
= uniform background: A 1(1,X) = A

= effective potential: v(A) = IA]/(8V).

We are interested in the Polyakov loop:
= temporal background A? = A%5 o

One can always choose Ay in the Cartan sub-algebra:
- SU(2): A = A3

- SU3): A = A3X + A8

The only role of the background is to lift the usual degeneracy between the three color directions.



Extended background field gauge

Feynman rules: modes
Ex.: SU(2) ghost propagator:

G'"(K) =% G (K) = %2

olG: { G2(K)=G(K) - eBFG: | G'(K) =iz K, = (wn+0gh k)
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SU(2) gluon propagator:
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Extended background field gauge

Feynman rules: modes
Ex.: SU(2) ghost propagator:

G'(K) = 2 GU(K) = %=

olG: { GR(K)=G"'(K) — eBFG: { G (K)=% | K, = (wn+0ghK)

G®(K) = G"(K)

G (K) = 7%
SU(2) gluon propagator:
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Gﬂ (K) _ P:-LV(K) " EP,”“/(K) G”V(K) - ’?24-"72 K2H+§m2
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33 iy = G I
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For each charge eigenstate, we have:

3 massive transverse gluons, 1 massless longitudinal gluon (£ — 0), 2 massless ghosts.



Polyakov-loop potential and center-symmetry breaking

Polyakov-loop potential
and center-symmetry breaking




Background as an order parameter

To discuss center-symmetry breaking from ~(A), it is first necessary to identify A
as an order parameter for center-symmetry breaking.

At LO, the path ordering in (L) does not play a role

(L) = lN (trP o915 a7 ('Z‘O*ao(f))> = 1Ntr e P9% L0 (g?)

[ —
=(Lho
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(L)lo=COS(mJ;)) = ’<L>10:0 iff r3zﬁg;\g:7r[27r]

The background plays the role of an order parameter for center-symmetry breaking!



LO Polyakov-loop potential: SU(2) case

Only the charged modes contribute to the background dependence of the potential
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LO Polyakov-loop potential: SU(2) case

Only the charged modes contribute to the background dependence of the potential
(A3 = 3T/ In (1 +e28%a _pg=Beq cos(BgZ\g)) -T f In (1 +e7209_gBa cos(ﬁgﬁg))
q . , q
=r3

Symmetries:

Center symmetry: v(r3) = ~v(r3 + 2m)
= we can restrict to [0, 27]

Center + C-symmetry:
(7 +0r3) =y (== dr3) = y(m - r3)
we can restrict to r3 € [0, 7]
0 and 7 are extrema

2n



LO Polyakov-loop potential: SU(2) case

Only the charged modes contribute to the background dependence of the potential

(A% = 3Tf In (1 + e 2Pcq _pgFea cos(,BgZ\g)) -T f In (1 + 67299 - 679 cos(BgAT) )
a —— q
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Thermal asymptotic behavior:
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LO Polyakov-loop potential: SU(2) case

Only the charged modes contribute to the background dependence of the potential
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LO Polyakov-loop potential: SU(2) case

Only the charged modes contribute to the background dependence of the potential

(A% = 3Tf In (1 + e 2Pcq _pgFea cos(,BgZ\g)) -T f In (1 + 67299 - 679 cos(BgAT) )
a —— q

=03

Thermal asymptotic behavior:
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(p-m)* (r3-m)? ) 77? 2nd order phase transition!
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LO Polyakov-loop potential: SU(3) case

We obtain a mildly first order phase transition in agreement with lattice or fRG results.

-

We obtain T./m ~ 0.363 and since m ~ 510 MeV, we obtain T. ~ 185MeV.
Still far from the lattice (T, ~ 295MeV) or from fRG results (7. ~ 284 MeV).



Polyakov-loop potential and center-symmetry breaking
LO artifacts

The Polyakov loop reaches its limiting value at a finite temperature T,/ T. = 1.5:
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Similar conclusion for SU(3) again with T,/T. = 1.38:
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Additional singularity in thermodynamical observables in the range [ T¢,2T.].



Next-to-leading order results

Next-to-leading order results J




Next-to-leading order results

NLO Polyakov-loop potential
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(with background-dependent propagators and background-dependent derivative vertices)
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Next-to-leading order results

Summary of NLO results

— At NLO, A plays the role of an order parameter. We find (L), = (1 + ag?8m) x (L), with
3 2
a= i+s.|n2(r3) dq ! q !
32 (2rm)3 | cosh(BQq) - cos(rz) €5 2 cosh(Beq) — cos(rs)
Since a > 0, it follows that (L), = 0 iff (L), = 0 iff rz = 7 [27].

— The NLO Polyakov loop potential is UV finite.
— Our “predictions” concerning the orders of the SU(2)/SU(3) transitions remain the same.

— We obtain improved values for T in the SU(3) case:

[ [[order [ LO ] NLO [ FRG™ T Lattice™ ]

[SU@) J] 1st [ 185MeV [ 256 MeV (prelim.) ]| 284 MeV [| 295MeV |
* Braun et. al, Phys.Lett. B684 (2010) ** Aouane et. al, Phys.Rev. D85 (2012).

— The LO artifact seems to be lifted or at least pushed to temperatures above 3 T.:
we do not find additional thermodynamical singularities in the range [ T¢,3Tc].



Next-to-leading order results

Conclusions and Outlook

o A perturbative one-loop calculation of the Polyakov-loop potential within
the extended BFG allows to capture the physics of center-symmetry breaking.

e Our approach allows for a systematic determination of higher order corrections.

e Two-loop corrections are important to reach a value of the transition temperature
comparable to that obtained on the lattice or with an fRG approach and to get rid
of certain artifacts of the one-loop calculation.

* *x * % %

) e Thermodynamics: meaningful
* eBFG propagators (in progress). (monotonically increasing) pressure?
e Include quarks and chemical

potential (in progress). [

= LOeLG SU(2)

° ... — LOeBFG SUQ2)

p NLO eBFG SU(2.

e Solid theoretical justification of

extended massive gauges? 0 \/

1 1.3

T/Tc



Next-to-leading order results

(more) Propaganda

And please, visit the posters by:

e Marcela Pelaez;
o Gergely Markoé;
e Andréas Tresmontant.



eLG from the perspective of the eBFG

The loop expansion in the eLG looks like an expansion around an instable point.

p= _’Y(rmin)
N : eLG: r3 =0 (max)

\5_/ eBFG: r3 = (min)

L
0 n 2n

eLGfor T <« m:
p=T* fqln(1 - e‘q) + T /qln(1 + e‘zq—QG‘qcos(r;;)) =374 /qln(1 - e‘q) <0
eBFG for T <« m:
p= T4fq|n(17e‘q)+T4[qIn(1+e‘q)2:7%T4fqln(17e‘q)>0

Effective change of nature of the degrees of freedom in the presence of the background!



LO Polyakov-loop potential: SU(3) case

Each charged mode contributes as in the SU(2) case but with its own Q3 and Qg charges:
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LO Polyakov-loop potential: SU(3) case

Each charged mode contributes as in the SU(2) case but with its own Q3 and Qg charges:

r3 + I’g\/§ -3+ fg\/§
—— | T Ysu2) - 5

Ysu(3) (135 18) = Ysu(2) (13) + Ysu(2) ( 5

4n

=

\/3_—471 An

Center-symmetry + Color invariance + C-symmetry



LO Polyakov-loop potential: SU(3) case

Each charged mode contributes as in the SU(2) case but with its own Q3 and Qg charges:
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LO Polyakov-loop potential: SU(3) case

Each charged mode contributes as in the SU(2) case but with its own Q3 and Qg charges:
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LO Polyakov-loop potential: SU(3) case

Each charged mode contributes as in the SU(2) case but with its own Q3 and Qg charges:
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Next-to-leading order results

LO Polyakov-loop potential: SU(3) case
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