
Seeing into a compact star using precise radio data

Alford & Schwenzer, APJ 781 (2014) 26, arXiv:1310.3524, arXiv:1403.7500

Quark matter in compact stars?

 The interior of a compact star is dense enough that it could contain various novel forms of matter ... in particular quark matter

> M. Alford, et. al., Rev. Mod. Phys. 80 (2008) 1455

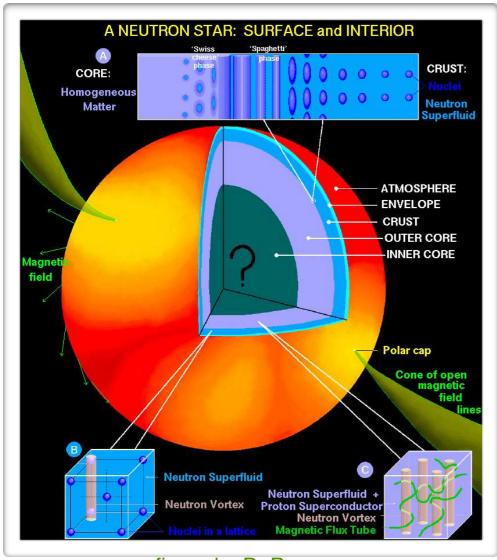
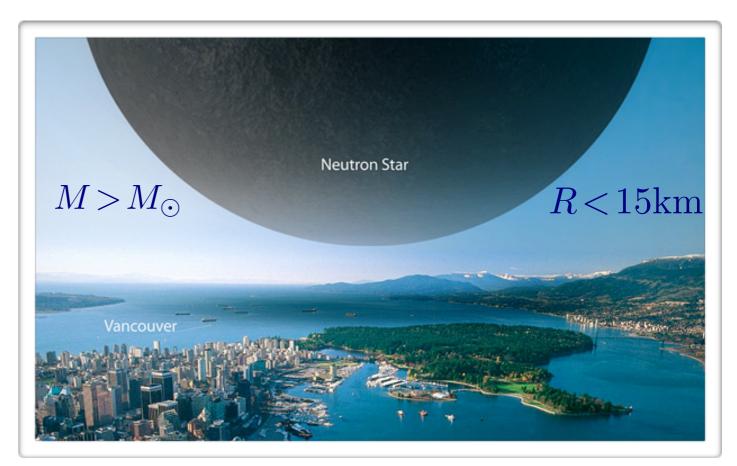
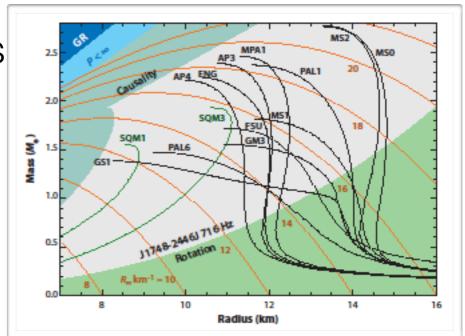
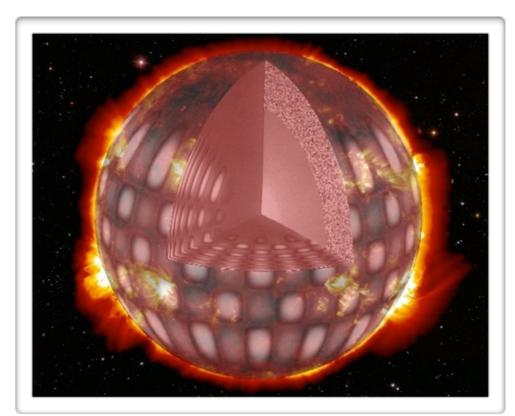




figure by D. Page

- Requires to connect observables to the microscopic properties:
- Static properties depend on EoS
- Dynamic prop.
 depend on low
 energy degrees
 of freedom


J. Lattimer, Ann. Rev. Nucl. Part. Sci. 62 (2012) 485

"Seeing into a compact star"

 Electromagnetic radiation originates from the surface connection to the interior very indirect

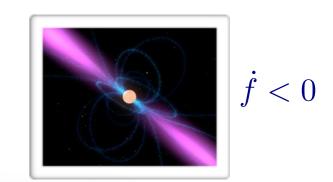
- Yet, one can use similar methods we use to learn about the interior of the earth or the sun:
- When non-axisymmetric oscillations are not damped away they emit gravitational waves ...
 - ✓ direct detection via gravitational wave detectors

advanced LIGO (~2015)

✓ indirect detection via the spin data of pulsars

Star oscillations are damped by viscosity, which is induced by microscopic particle interactions

... links macroscopic observables to microphysics of dense matter


Millisecond pulsars & timing data

- Gravitational waves emitted by star oscillations would generally quickly spin down a fast spinning star
- But many fast ("millisecond") pulsars are observed they can be grouped into two classes:
 - ms x-ray pulsars in (low mass) binaries (LMXBs)
 currently accrete from a companion which
 allows a temperature measurement (10+ sources)
 e.g. Haskell, et. al., MNRAS 424 (2012) 93

 $\dot{f} > 0$

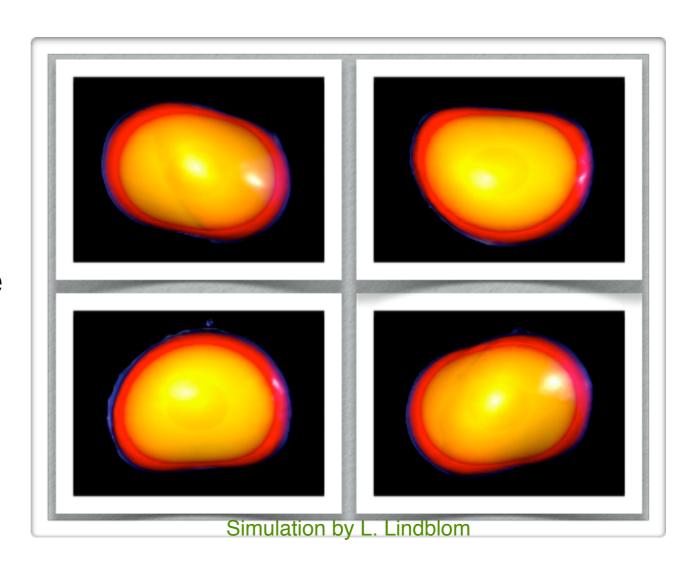
- ❖ T's involve modeling and are uncertain
- ms radio pulsars (200+ sources) are very old and don't accrete any more, but feature extremely stable timing data

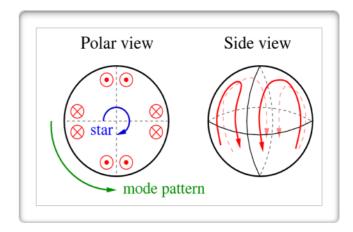
◆ one of the most precise NAME J0534+2200 J0537-6910 J0537-6910 J0540-6919 J2022+3842 J1513-5908 J1846-0258 J

Fast pulsars are a puzzle when modes become unstable ...

R-mode oscillations

 R-mode: Eigenmode of a rotating star which is unstable against gravitational wave emission


N. Andersson, Astrophys. J. 502 (1998) 708,L. Lindblom, et. al., PRL 80 (1998) 4843


Large amplitude rmodes could cause a quick spindown

B. J. Owen, et. al., Phys. Rev. D 58 (1998) 084020

- But r-mode growth has to be stopped by some non-linear damping mechanism, e.g.
 - non-linear viscous damping
 M. Alford, S. Mahmoodifar and K.S.,
 PRD 85 (2012) 044051
 - non-linear hydro effects large $\alpha=O(1)$ L. Lindblom, et. al., PRL 86 (2001) 1152, W. Kastaun, Phys.Rev. D84 (2011) 124036
 - mode-coupling small $\alpha \ll 1$ P. Arras, et. al., Astrophys. J. 591 (2003) 1129, R. Bondarescu, et. al., Astrophys. J. 778 (2013) 9

velocity oscillation:
$$\delta \vec{v} = \alpha R \Omega \left(\frac{r}{R}\right)^l \vec{Y}_{ll}^B \mathrm{e}^{i\omega t}$$

Dissipation in dense matter

Shear viscosity from particle scattering (strong/EM interaction)

candidate phase	dominant processes	shear viscosity	reference
(ungapped) nuclear matter	$\begin{array}{c} e+e \rightarrow e+e \\ n+n \rightarrow n+n \end{array}$	$\eta \sim (T/\mu)^{-5/3} \& (T/\mu)^{-2}$	Shternin, <i>et.al.</i> , PRD 78 (2008) 063006
hyperonic matter	$\begin{array}{c} e+e \rightarrow e+e \\ n+n \rightarrow n+n \end{array}$	$\eta \sim (T/\mu)^{-5/3} \& (T/\mu)^{-2}$	ii
superfluid nuclear matter	$e + e \rightarrow e + e$	$\eta \sim (T/\mu)^{-5/3}$	и
ungapped quark matter	$q + q \rightarrow q + q$	$\eta \sim (T/\mu)^{-5/3}$	Heiselberg, et.al., PRD 48 (1993) 2916
CFL quark matter	H o H + H	$\eta \sim (T/\mu)^4$	Manuel, <i>et. al.</i> , JHEP 09 (2005) 76; Andersson, <i>et. al.</i> , PRD 82 (2010) 023007

Bulk viscosity from particle transformation (weak interaction)

candidate phase	dominant processes	bulk viscosity: low T	reference
(ungapped) nuclear matter	$n(+n) \rightarrow p(+n) + e + \bar{\nu}$ $p(+n) \rightarrow n(+n) + e + \nu$	$\zeta \sim (T/\mu)^6 \text{ or } (T/\mu)^4$	Sawyer, PLB 233 (1989) 412; Haensel, <i>et.al.</i> , PRD 45 (1992) 4708
hyperonic matter	$n+n \rightarrow p+\Sigma^-, \ldots$	$\zeta \sim (T/\mu)^2$	Haensel, et. al., A&A 381 (2002) 1080
superfluid nuclear matter	$e+l \leftrightarrow \mu+l+\nu+\bar{\nu}$	$\zeta \sim (T/\mu)^7$	Alford, et.al., PRC 82 (2010) 055805
ungapped quark matter	$d+u \leftrightarrow s+u$	$\zeta \sim (T/\mu)^2$	Madsen, PRD 46 (1992) 3290
CFL quark matter	$K_0 o H + H$	$\zeta \sim e^{-c(\mu/T)}$	Alford, et.al., PRC 75 (2007) 055209

"Effective Theory of pulsars"

 Observable macroscopic properties depend only on quantities that are integrated over the entire star:

$$I = \tilde{I}MR^2 \quad \text{(MOMENT OF INERTIA)}$$

$$P_G = \frac{32\pi(m-1)^{2m}(m+2)^{2m+2}}{((2m+1)!!)^2(m+1)^{2m+2}} \tilde{J_m}^2 GM^2 R^{2m+2} \alpha^2 \Omega^{2m+4} \quad \text{(POWER RADIATED IN GRAVITATIONAL WAVES)}$$

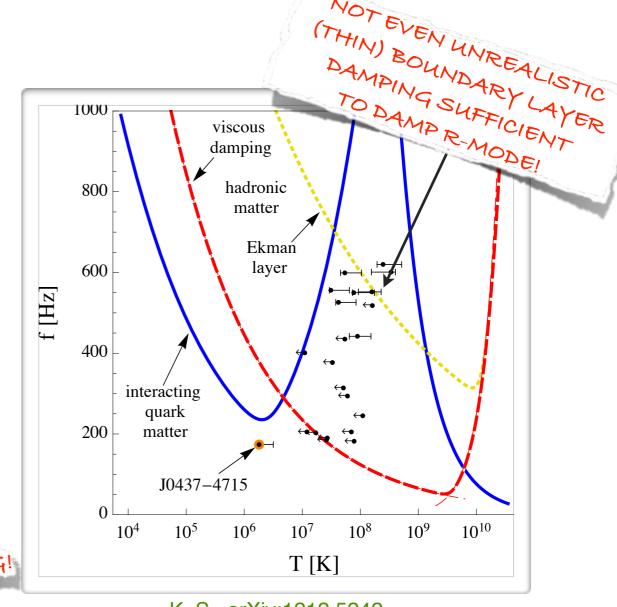
$$P_S = -\frac{(m-1)(2m+1)\tilde{S}_m\Lambda_{\mathrm{QCD}}^{3+\sigma}R^3\alpha^2\Omega^2}{T^\sigma} \quad \text{(DISSIPATED POWER DUE TO SHEAR / BULK }$$

$$P_B = -\frac{16m}{(2m+3)(m+1)^5\kappa^2} \frac{\Lambda_{QCD}^{9-\delta}\tilde{V}_m R^8\alpha^2\Omega^4T^\delta}{\Lambda_{EW}^4\tilde{J}_m} \quad \text{VISCOSITY)}$$

$$L_{\nu} = 4\pi R^3\Lambda_{EW}^4\Lambda_{QCD}^{1-\theta}\tilde{L}T^\theta \quad \text{(NEUTRINO LUMINOSITY)}$$

"Effective Theory of pulsars"

 Observable macroscopic properties depend only on quantities that are integrated over the entire star:

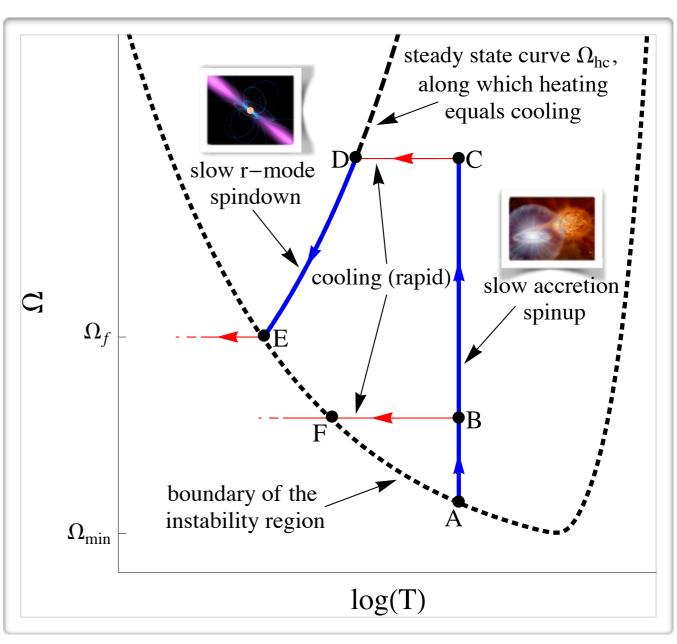

$$\begin{split} I &= \tilde{I}MR^2 \\ P_G &= \frac{32\pi (m-1)^{2m} (m+2)^{2m+2}}{((2m+1)!!)^2 (m+1)^{2m+2}} \tilde{J_m}^2 GM^2 R^{2m+2} \alpha^2 \Omega^{2m+4} \\ P_S &= - (m-1) \left(2m+1\right) \tilde{S}_m \frac{\Lambda_{\rm QCD}^{3+\sigma} R^3 \alpha^2 \Omega^2}{T^{\sigma}} \quad \text{with} \\ P_B &= -\frac{16m}{(2m+3)(m+1)^5 \kappa^2} \tilde{V}_m \frac{\Lambda_{\rm QCD}^{9-\delta} R^8 \alpha^2 \Omega^4 T^{\delta}}{\Lambda_{EW}^4 \tilde{J}_m} \\ L_{\nu} &= 4\pi R^3 \Lambda_{EW}^4 \Lambda_{QCD}^{1-\theta} \tilde{L} T^{\theta} \end{split} \qquad \qquad \tilde{L} \equiv \frac{1}{R^{3} \Lambda_{EW}^4 \Lambda_{QCD}^{1-\theta}} \int_{R_i}^{R_o} dr \, r^{2m} \tilde{\rho} \\ \tilde{L} &\equiv \frac{1}{R^{3} \Lambda_{EW}^4 \Lambda_{QCD}^{1-\theta}} \int_{R_i}^{R_o} dr \, r^{2} A^2 C^2 \tilde{\Gamma} \, \left(\delta \Sigma_m\right)^2 \\ \tilde{L} &\equiv \frac{1}{R^{3} \Lambda_{EW}^4 \Lambda_{QCD}^{1-\theta}} \int_{R_i}^{R_o} dr \, r^{2} \tilde{\epsilon} \end{split}$$

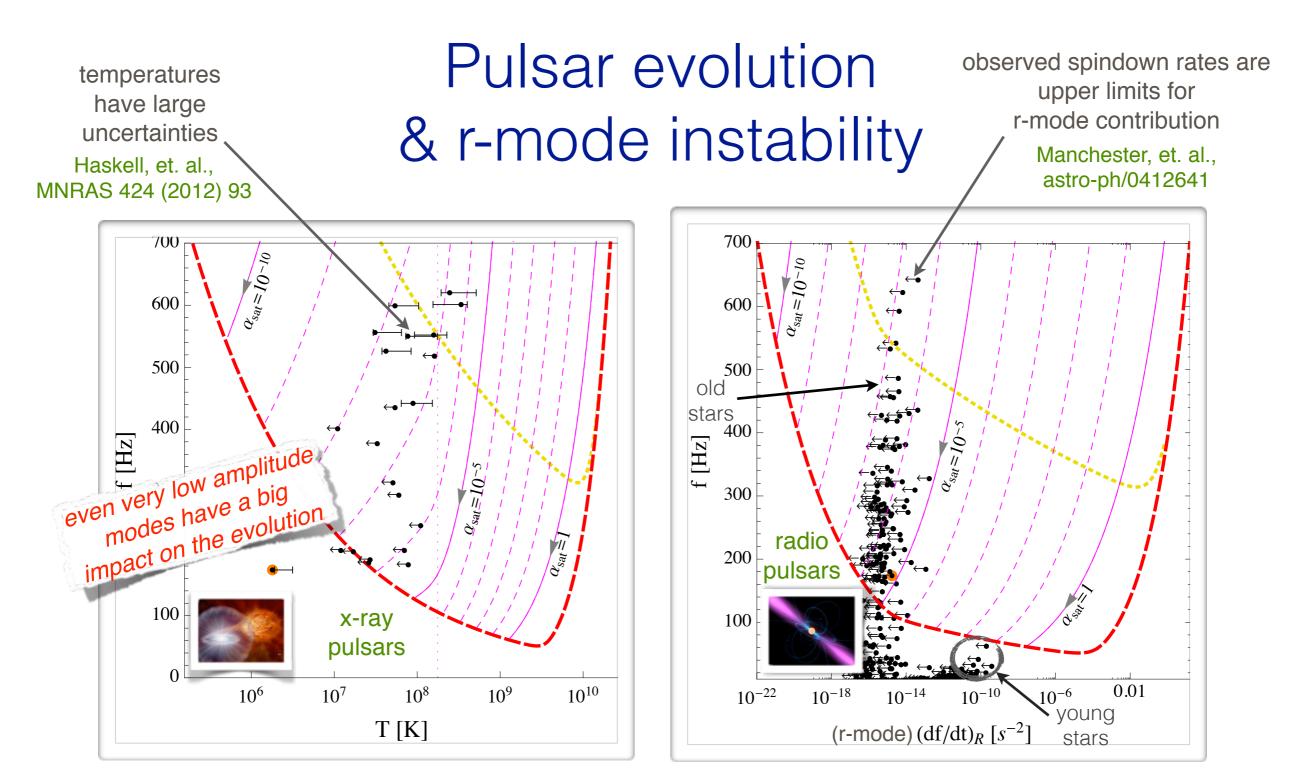
- Pulsar evolution for r-mode amplitude α , angular velocity Ω and temperature T are obtained from global conservation laws
- * Universal hierarchy of evolution time scales: $\tau_{\alpha} \ll \tau_{T} \ll \tau_{\Omega}$

M. Alford & K. S., APJ 781 (2014) 26

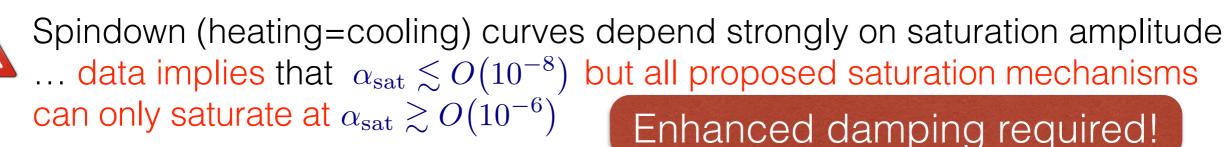
Static instability regions vs. x-ray data

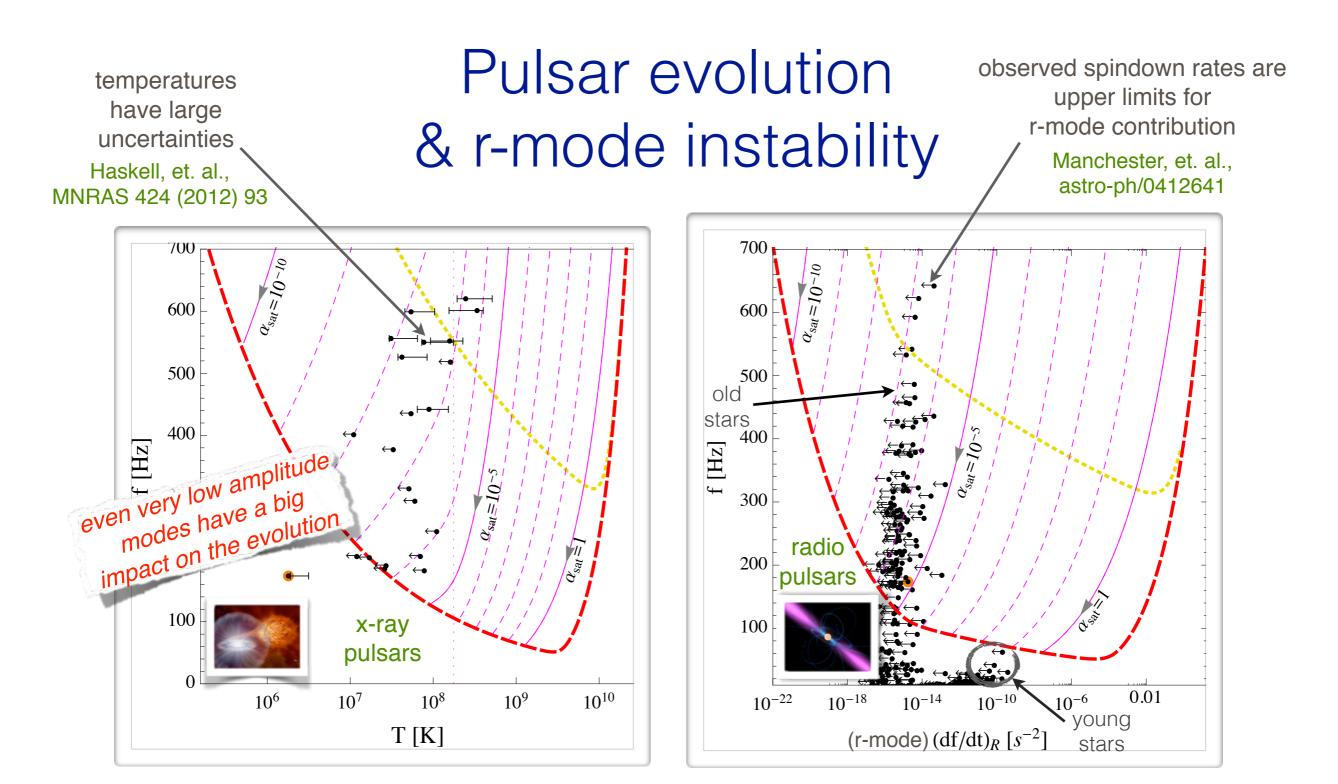
- R-modes are unstable at large frequencies if the damping is not sufficient
- Boundary given by $P_G = P_D|_{\alpha \to 0}$
- Requires temperature measurements which are only available for a few low mass x-ray binaries
- Two scenarios to explain data: "no r-mode": completely damped "tiny r-mode": unstable, but saturated at small $\alpha_{\rm sat}$



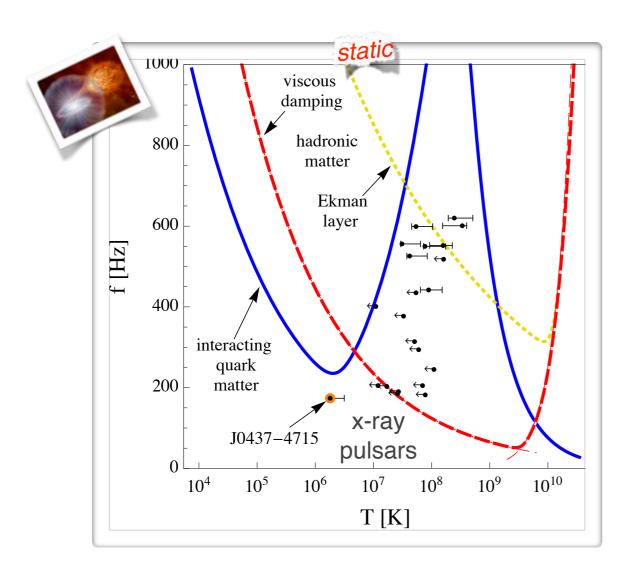

K. S., arXiv:1212.5242 analytic result: $\Omega_{ib}(T)=\left(\hat{D}T^\delta\lambda^\Delta/\hat{G}\right)^{1/(8-\psi)}$

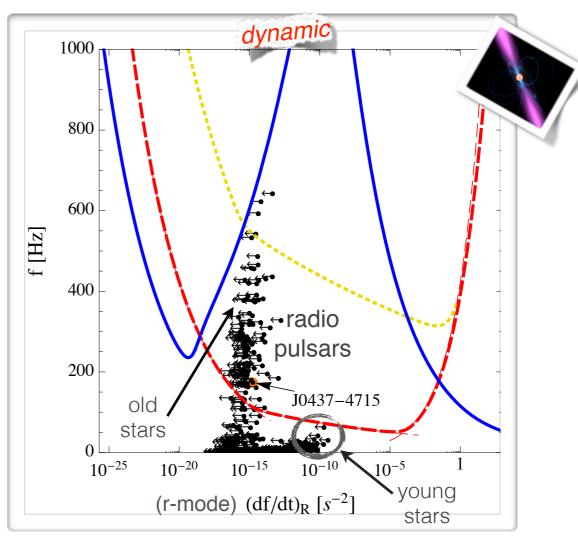
- Many sources are clearly within the instability region for neutron stars with standard damping (tiny r-mode scenario required)
- Quark matter (incl. gauge interactions) fully damps mode (no r-mode)


Evolution of millisecond pulsars


- Pulsars are spun up by accretion in low mass x-ray binaries (LMXBs), which heats them strongly
- When accretion stops, they cool quickly until either ...
 - they leave the instability region (low frequencies)
 - r-mode heating balances cooling (high frequencies)
 - very slow spindown along steady state curve

Spindown solution allows to connect to timing data of radio pulsars ...




!

We only measure the total spindown rate which can stem from various mechanisms, so that the sources could be outside of the instability region ...

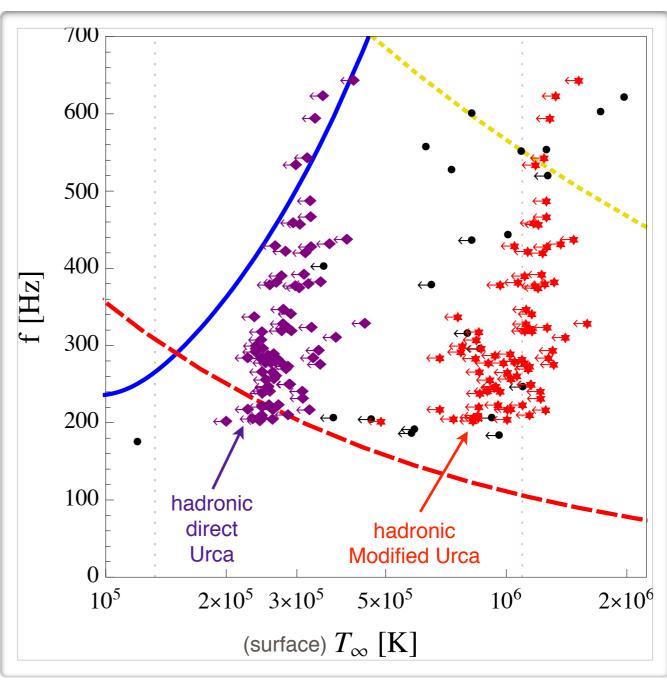
• However, to cool out of the instability region would even require $lpha_{
m sat} \lesssim O(10^{-10})$

R-mode instability regions vs. thermal x-ray & radio timing data

M. Alford & K. S., arXiv:1310.3524

Dynamic Instability boundaries in timing parameter space:

$$\Omega_{ib} \Big(\dot{\Omega} \Big) = \Big(\hat{D}^{\theta} I^{\delta} |\dot{\Omega}|^{\delta} / \left(3^{\delta} \hat{G}^{\theta} \hat{L}^{\delta} \right) \Big)^{1/((8-\psi)\theta-\delta)}$$
 independent of saturation physics!


Interacting quark matter consistent with both x-ray and radio data (no r-mode scenario)

"R-mode temperatures"

 The connection between the spindown curves allows to determine the R-mode temperature of a star with saturated r-mode oscillations (tiny r-mode scenario) for given timing data

$$T_{rm} = \left(I\Omega\dot{\Omega} / \left(3\hat{L} \right) \right)^{1/\theta}$$

- Independent of the saturation mechanism ... but depends on the cooling
- Temperatures only upper bounds since the observed spindown rate can also stem from electromagnetic radiation
- Measurements of temperatures (or bounds) of fast nearby radio pulsars would allow us to test if saturated rmodes can be present
 - falsifiable scenario!

M. Alford & K.S., arXiv:1310.3524

If radio pulsars spin down by r-mode emission, they would be warm enough to observe thermal x-rays

Conclusions and Outlook

- → Timing data of radio pulsars ... can be used to probe the interior of compact stars
- Standard neutron stars cannot damp r-modes in LMXBs and cannot explain the radio pulsar data for proposed r-mode saturation mechanisms
 - ★ Quark matter can simultaneously explain the data on LMXBs and radio pulsars

- → Thermal x-ray or gravitational wave measurements for nearby millisecond pulsars would tell us which scenario is realized
- Need to rule out other possible mechanisms of enhanced damping (crust, superfluidity, ...)