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Motivation, Goals & Strategy

Quark gluon plasma

@ What are the dominant mechanisms behind the fast thermalization

Goals

@ Gain insight into the fast thermalization process
@ Which modes thermalise first: top down vs. bottom up

e Dependence on the coupling strength

Strategy

e SYM where weak and strong coupling regimes are accessible
e Relax infinite coupling limit

e Study quasinormal modes (near equilibrium)

e Retarded Green’s functions far off equilibrium



Outline

Weak and strong coupling results

Quasinormal modes

Far off-equilibrium correlators



Thermalization at weak coupling

Questions one wants to answer

e Parametric weak coupling estimate: How does the therm time depend on the

coupling constant .
Q
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tequ N
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@ what are the dominant processes?

Bottom-up thermalization (Baier et al (2001))

@ Scattering processes
e In the early stages many soft gluons are emitted which then thermalize the
system (Baier et al (2001)): ngmss ~ -13/5
e Driven by instabilities

e Instabilities induce collinear radiation instead of scattering processes and
make therm. faster (Kurkela, Moore (2011)): nxkm ~ -5/2



Thermalization at strong coupling

Thermalization process of strongly coupled N=4 SYM is mapped to
black hole formation 1in asymptotically AdS space
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(v Chesler & Yaffe
Lessons from gauge/gravity duality

e Thermalization time naturally short teq~1/T

e Hydrodynamization # thermalization, 1sotropization

e Thermalization always top down (causal argument)




Bridging the gap

Goal of this work: try to relax the infinite coupling limit and bring the
two limiting cases closer together



Correlators for studying thermalization

Quasinormal modes

@ characterize the response of the system to inf. perturbations
e Structure of retarded thermal Greens functions = Dispersion relation of field
excitations

wn(q) = Mn(q) — iT'n(q),
e Reveal striking difference between weakly and strongly coupled systems
e At weak coupling long lived quasiparticles: Im(w,) < Re(w,)
e At infinite coupling: infinite tower of modes Wn|q=0 = n(E£1 — 1)

e Magnitude of 1 related to thermalization pattern: At strong coupling highest
energy modes decay fastest — top down thermalization

Time dependent off-equilibrium Greens functions probe how fast different
energy (length) scales equilibrate



Two examples

Energy momentum tensor correlators

e linearized perturbations of  guv — Guv + Ay

@ construct gauge invariants from symmetry channels (Kovtun, Starinets)
@ scalar channel: 5y,
@ shear channel: D¢y, h.q

e sound channel: Ay, hin, h.., h

EM current correlators — photon production

e Obtained by adding a U(1) vector field coupled to a conserved current
corresponding to a subgroup of the SU(4)r



QNM at infinite coupling: Photons
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e Pole structure of EM current-current correlator displays usual quasinormal mode
spectrum at infinite coupling

e How does the QNM spectrum get modified at finite coupling?



Finite coupling corrections

Key relation in AdS/CFT: (L/I,)* = L*/a/? = )

e Gobeyond A\ = 0o : add o' terms to SUGRA action, i.e. first non trivial
terms in a small curvature expansion

e Leading order corrections: O(a/?) = O(\~3/2)

Gubser et al; Pawelczyk, Theisen (1998)
Improved type IIB SUGRA action:
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e Leadsto ~-corrected metric

e EoM for different fields



QNM at finite coupling: photons
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Effect of decreasing coupling: Imaginary part increases, lowering the decay rate of the
excitations = modes become longer - lived

Larger impact on higher energetic modes

Convergence of strong coupling expansion not guaranteed when shift is of O(1)



QNM at finite coupling: Photons
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e similar shift at nonzero three momentum: q=2mT
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QNM at finite coupling: 1,,, correlators
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Same effect for the shear (left) and sound (right) channel (here q=0)

Outside the infinite coupling, the response of a strongly coupled plasma appears to
change, with the QNM mode spectrum moving towards a quasiparticle one

What happens if we the take the system further away from equilibrium by using the

collapsing shell model?




The falling shell setup
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The falling shell setup
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Thermalization from geometric probes:

e Entanglement entropy and Wilson loop: always top down thermalization



The falling shell setup

AdS AdS-bh Danielsson, Keski-Vakkuri,
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The falling shell setup
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Quasistatic approximation:

e Energy scale of interest >> characteristic time scale of shell’s motion



Spectral density: scalar channel

natural quantity to study: spectral
density: x4 = —2Im(II*")% (ko)

e virtuality
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spectral density for us =0.5 for different virtualities

@ Out of equilibrium effect: oscillations around thermal value



Relative deviation of spectral density: scalar channel

@ Relative deviation from thermal

04,
equilibrium

N X(@) - Xth(@)
R(&) = Xth (W)

—04

relative deviation R for us=0.5 and c=8/9 (red), 5/9 (blue), O (black)

e Top down thermalization: highly energetic modes are closer to equ. value

e Dependence on c: smaller ¢ — R closer to equilibrium

@ As the shell approaches the horizon spectral density approaches equilibrium
value



R,

Relative deviation at finite coupling

Scalar channel

Shear channel
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Relative deviation for the scalar/shear channel for us=0.5, c=0, 6/9, 8/9 and A\ = 100
e For c=0: R approaches a constant for large frequencies
@ As cincreases: fluctuation amplitude starts to grow at some critical Werit
e Indication of weakening the top-down thermalization pattern
e Decreasing the coupling: change happens at lower frequency
@ Same behaviour for all three channels



Relative deviation: photons

Infinite coupling:

e Highly virtual photons thermalise first

. 2 J1(us 1
e Top down pattern X(w) ~ w3 (1 + 1(A ) ; R~ o
Finite coupling:
e For maximally virtual photons (¢c=0) R approaches a constant as w — oo

@ For on-shell photons (c=1): amplitude of R rises linearly with w
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Photon production rate at infinite coupling
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photon production rate for r¢/rn=1.1, 1.01, 1.001

e Enhancement of production rate

e Hydro peak broadens and moves right

e Apparently no dramatic observable signature in off-equilibrium photon
production

@ Combining the two allows to study thermalization at finite coupling!



Photon production rate at intermediate coupling
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emission rate for photons r/rn=1.01 and )\ = oo, 120, 80, 40

e Behaviour qualitatively similar to equilibrium case: in particular the result is much less

sensitive to finite coupling corrections than QNM spectrum



Implications for holography

e For a given (equilibrium) quantity
X(A) = X(A = 00) x (1+X1/3%2 + O(1/7%))

e Define critical coupling A. such that |X;/ Ai’/ ’| = 1. Then:

Quantity Ac
Pressure 0.9
Transport /hydro coeffs. 7T+1
(77/57 TH, /{)

Quasinormal mode n | A.(n =1) = 200, A.(n = 2) = 500
for photons / T, Ac(n = 3) = 1000,.
Spectral densities Ae(w = 0) = 40,

in equilibrium Ac(w — 00) = 0.8, ...

e Lesson: What 1s weak/strong coupling depends strongly on the quantity.
Thermalization properties appear to be sensitive to strong coupling corrections



Conclusions

Holographic (thermalization) calculations at finite coupling are possible and
potentially a very fruitful exercise

Indications that a holographic systems obtains weakly coupled characteristic within
the realm of a strong coupling expansion

e QNM modes: flow towards quasiparticle picture, independent of the thermalization
model

e Top-down thermalization pattern weakens and moves towards bottom-up

Naive conclusion: to describe the physical heavy 1on system using holography (A ~ 20)
accounting for finite coupling corrections mandatory

As always: more work needed

e 1in particular go beyond the quasistatic approximation and study full dynamical problem



