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Motivation, Goals  & Strategy

Quark gluon plasma	


What are the dominant mechanisms behind the fast thermalization   	



Goals	


Gain insight into the fast thermalization process	


Which modes thermalise first: top down vs. bottom up	


Dependence on the coupling strength	



Strategy	


SYM where weak and strong coupling regimes are accessible	


Relax infinite coupling limit	


Study quasinormal modes (near equilibrium)	


Retarded Green’s functions far off equilibrium 



Outline

!

 Weak and strong coupling results	



 Quasinormal modes	



 Far off-equilibrium correlators



Thermalization at weak coupling

Questions one wants to answer	


Parametric weak coupling estimate: How does the therm time depend on the 
coupling constant	



!

what are the dominant processes?	


!
Bottom-up thermalization (Baier et al (2001))	



Scattering processes 	



In the early stages many soft gluons are emitted which then thermalize the 
system  (Baier et al (2001)): nBMSS ~ -13/5	



Driven by instabilities 	



Instabilities induce collinear radiation instead of scattering processes and 
make therm. faster (Kurkela, Moore (2011)): nKM ~ -5/2	



tequ ⇠ ↵n

Qs



Thermalization at strong coupling

3

E/µ4

µv µz

Wednesday, November 10, 2010

FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.

disjoint support. Although this is not exactly true for our
Gaussian profiles, the residual error in Einstein’s equa-
tions is negligible when the separation of the incoming
shocks is more than a few times the shock width.

To find the initial data relevant for our metric ansatz
(1), we solve (numerically) for the di↵eomorphism trans-
forming the single shock metric (8) from Fe↵erman-
Graham to Eddington-Finkelstein coordinates. In par-
ticular, we compute the anisotropy function B± for each
shock and sum the result, B = B

+

+ B�. We choose the
initial time v

0

so the incoming shocks are well separated
and the B± negligibly overlap above the apparent hori-
zon. The functions a

4

and f
2

may be found analytically,

a
4

= � 4

3

[h(v
0

+z)+h(v
0

�z)] , f
2

= h(v
0

+z)�h(v
0

�z).
(10)

A complication with this initial data is that the metric
functions A and F become very large deep in the bulk,
degrading convergence of their spectral representations.
To ameliorate the problem, we slightly modify the initial
data, subtracting from a

4

a small positive constant �.
This introduces a small background energy density in
the dual quantum theory. Increasing � causes the regions
with rapid variations in the metric to be pushed inside
the apparent horizon, out of the computational domain.

We chose a width w = 0.75/µ for our shocks. The
initial separation of the shocks is �z = 6.2/µ. We chose
� = 0.014 µ4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
shocks. We evolve the system for a total time equal to
the inverse of the temperature associated with the back-
ground energy density, T

bkgd

= 0.11 µ.

Results and discussion.— Figure 1 shows the energy
density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
sion, centered on v = 0, energy is deposited throughout
the region between the two receding energy density max-
ima. The energy density after the collision does not re-
semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-
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FIG. 2: Energy flux S/µ4 as a function of time v and longi-
tudinal coordinate z.
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10�4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = �0.23/µ, where Pk has its
maximum, it is roughly 5 times larger than P?. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, Pk is more than 3 times
larger than P?.

The fluid/gravity correspondence [17] implies that at
su�ciently late times the evolution of Tµ⌫ will be de-
scribed by hydrodynamics. To test the validly of hydro-
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FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.
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the inverse of the temperature associated with the back-
ground energy density, T
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density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10�4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = �0.23/µ, where Pk has its
maximum, it is roughly 5 times larger than P?. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, Pk is more than 3 times
larger than P?.

The fluid/gravity correspondence [17] implies that at
su�ciently late times the evolution of Tµ⌫ will be de-
scribed by hydrodynamics. To test the validly of hydro-

Lessons from gauge/gravity duality	



Thermalization time naturally short teq~1/T	



Hydrodynamization ≠ thermalization, isotropization	


!
Thermalization always top down (causal argument)

Thermalization process of strongly coupled N=4 SYM is mapped to 
black hole formation in asymptotically AdS space	



Chesler & Yaffe



Bridging the gap

Goal of this work: try to relax the infinite coupling limit and bring the 
two limiting cases closer together	





Correlators for studying thermalization

Quasinormal modes	



characterize the response of the system to inf. perturbations	


Structure of retarded thermal Greens functions ⇒ Dispersion relation of field 
excitations	



!

Reveal striking difference between weakly and strongly coupled systems	



At weak coupling long lived quasiparticles:	



At infinite coupling: infinite tower of modes	



Magnitude of       related to thermalization pattern: At strong coupling highest 
energy modes decay fastest — top down thermalization

!n|q=0 = n(±1� i)

�n

Time dependent off-equilibrium Greens functions probe how fast different 
energy (length) scales equilibrate

Im(!n) ⌧ Re(!n)



Two examples

Energy momentum tensor correlators	



linearized perturbations of 	


construct gauge invariants from symmetry channels	



scalar channel:	


shear channel:	


sound channel:	



EM current correlators — photon production	



Obtained by adding a U(1) vector field coupled to a conserved current 
corresponding to a subgroup of the SU(4)R 	



gµ⌫ ! gµ⌫ + hµ⌫

(Kovtun, Starinets)



QNM at infinite coupling: Photons

Pole structure of EM current-current correlator displays usual quasinormal mode 
spectrum at infinite coupling	


!
How does the QNM spectrum get modified at finite coupling?

Results Photons beyond the � = 1 limit

Quasinormal mode spectrum at finite coupling
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Well known fact: At � = 1, N = 4 SYM doesn’t have a quasiparticle
spectrum !

n
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. Instead, solving for poles
of retarded equilibrium correlator reveals quasinormal mode spectrum
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!n|q=0 = n(±1� i)

(Kovtun, Starinets)



Finite coupling corrections
Key relation in AdS/CFT: 	



Go beyond               :   add       terms to SUGRA action, i.e. first non trivial 
terms in a small curvature expansion	



Leading order corrections:	



Improved type IIB SUGRA action: 

Paulos (2008)

� ⌘ 1

8
⇣(3)�� 3

2Tabcdef = iraF
+
bcdef +

1

16

⇣
F+
abcmnF

+ mn
def � 3F+

abfmnF
+ mn
dec

⌘
,

Gubser et al; Pawelczyk, Theisen (1998)

Leads to     -corrected  metric 	



EoM for different fields



QNM at finite coupling: photons

Effect of decreasing coupling: Imaginary part increases, lowering the decay rate of the 
excitations ⇒ modes become longer - lived	



Larger  impact on higher energetic modes	



Convergence of strong coupling expansion not guaranteed when shift is of 
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QNM at finite coupling: Photons

similar shift at nonzero three momentum: q=2πT
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QNM at finite coupling:        correlators

       Same effect for the shear (left) and sound (right) channel (here q=0)	


!
!
Outside the infinite coupling, the response of a strongly coupled plasma appears to 
change, with the QNM mode spectrum moving towards a quasiparticle one	


!
What happens if we the take the system further away from equilibrium by using the 
collapsing shell model?
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The falling shell setup

!

Outside and inside spacetime	



metric:           	



!

!

!

u =
r2h
r2

ds

2 =
(⇡TL)2

u

�
f(u)dt2 + dx

2 + dy

2 + dz

2
�
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L

2

4u2
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du
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f(u) =

⇢
f+(u) = 1� u2 , for u > 1

f�(u) = 1 , for u < 1

,

r = 1rhr = 0 rs

AdS AdS-bh Danielsson, Keski-Vakkuri, 
Kruczenski (1999)

 Lin & Shuryak (2008)



The falling shell setup

!

Outside and inside spacetime	



metric:           	



!

AdS-bh
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Thermalization from geometric probes:	


Entanglement entropy and Wilson loop: always top down thermalization           	



Danielsson, Keski-Vakkuri, 
Kruczenski (1999)

 Lin & Shuryak (2008)



The falling shell setup

!

Outside and inside spacetime	



metric:           	



!

Outside solution  	



!
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The falling shell setup

!

Outside and inside spacetime	



metric:           	



!
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,

AdS AdS-bh Danielsson, Keski-Vakkuri, 
Kruczenski (1999)

Quasistatic approximation: 	



Energy scale of interest >> characteristic time scale of shell’s motion	



 Lin & Shuryak (2008)



 Spectral density: scalar channel

spectral density for  us  =0.5 for different virtualities

Out of equilibrium effect: oscillations around thermal value	



virtuality

v =
!̂2 � q̂2

!̂2

parametrize q = c !̂

c=0

c=5/9

c=8/9
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natural quantity to study: spectral 
density:  �µ

µ = �2Im(⇧ret)µµ(k0)



Relative deviation of spectral density: scalar channel

Relative deviation from thermal 
equilibrium

R(!̂) =
�(!̂)� �th(!̂)

�th(!̂)

relative deviation R for us=0.5 and c=8/9 (red), 5/9 (blue), 0 (black)

Top down thermalization: highly energetic modes are closer to equ. value	


Dependence on c: smaller c      R  closer to equilibrium	


As the shell approaches the horizon spectral density approaches equilibrium 
value	
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Relative deviation at finite coupling

Scalar channel

For c=0: R approaches a constant for large frequencies	


As c increases: fluctuation amplitude starts to grow at some critical 	


Indication of weakening the top-down  thermalization pattern	


Decreasing the coupling: change happens at lower frequency	


Same behaviour for all three channels

Shear channel
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Relative deviation for the scalar/shear channel for us=0.5, c=0, 6/9, 8/9 and

!crit



Relative deviation: photons

!

Infinite coupling: 	



Highly virtual photons thermalise first	



Top down pattern	



Finite coupling:	



For maximally virtual photons (c=0) R approaches a constant as	



For on-shell photons (c=1): amplitude of R rises linearly with 

�(!̂) ⇡ !̂
2
3

✓
1 +

f1(us)

!̂

◆
, R ⇡ 1

!̂



Combining the two allows to study thermalization at finite coupling!	



Photon production rate at infinite coupling

photon production rate for rs/rh=1.1, 1.01, 1.001

Enhancement of production rate	



Hydro peak broadens and moves right	



Apparently no dramatic observable signature  in off-equilibrium photon 
production
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Photon production rate at intermediate coupling

Behaviour qualitatively similar to equilibrium case: in particular the result is much less 
sensitive to finite coupling corrections than QNM spectrum
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Implications for holography

Quantity �c

Pressure 0.9

Transport/hydro coe↵s. 7± 1

(⌘/s, ⌧H , )
Quasinormal mode n �c(n = 1) = 200, �c(n = 2) = 500

for photons / Tµ⌫ �c(n = 3) = 1000,...

Spectral densities �c(! = 0) = 40,

in equilibrium �c(! ! 1) = 0.8, ...

For a given (equilibrium) quantity 	



X(�) = X(� = 1)⇥
⇣
1 +X1/�

3/2 +O(1/�3)
⌘

�cDefine critical coupling      such that                        . Then:	

|X1/�
3/2
c | = 1

Lesson: What is weak/strong coupling depends strongly on the quantity. 
Thermalization properties appear to be sensitive to strong coupling corrections	





Conclusions

Holographic (thermalization) calculations at finite coupling are possible and 
potentially a very fruitful exercise  	



Indications that a holographic systems obtains weakly coupled characteristic within 
the realm of a strong coupling expansion	



QNM modes: flow towards quasiparticle picture, independent of the thermalization 
model 	


Top-down thermalization pattern weakens and moves towards bottom-up	



!
Naive conclusion: to describe the physical heavy ion system using holography        
accounting for finite coupling corrections mandatory	



As always: more work needed	



in particular go beyond the quasistatic approximation and study full dynamical problem

(� ⇠ 20)


