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| . Introduction

® |n scalar field theories, there exist localized objects

® [n U(l) charge conserved complex scalar theory




| . Introduction

Let us see formations of balls.

With initial conditions which have a little fluctuations,
balls are formed in the timescale of oscillation.

Example: Snapshots of Q-ball formation in a 3D lattice simulation

From ""Numerical study of Q-ball formation in gravity mediation”, T. Hiramatsu, M. Kawasaki, F. Takahashi 2010

With fixed
initial charge

t=925/m t=2000/m

White surfaces represent regions with high charge density.
One can see balls of charge are formed!!




| . Introduction

Q < I’'m stable )

Complex scalar theory A Real scalar theory
W|th conserved charge Q , :
P = auq)’f'a#¢ —m I(I) _ VU(I)(ICPI)- ;-% Y = Eau¢a“¢ - §m2¢2 —
& : complex scalar field !
U(l) symmetry: & — e

¢ :real scalar field

prvesncn s rrmisesmmmonny | ocalized amplitude.
Localized charge ¥ For both cases, balls eX|st; ¢ 4

¢ if the potential is a little
{ shallower than quadratic §

potential
{ fquadratic-’

shallower$
) )
|®| or ¢




| . Introduction

~, Overview of stability of the Q-ball
Q Consider the situation with fixed charge Q and

" where non-relativistic modes dominate.

Localized configuration

potential
quadratic.

With a large amplitude,
effective frequency w,
becomes small!!

\_

E >~ wyQ <mQ

Free particles

Localized configuration is energetically favored!!




| . Introduction

, . One can show that with fixed charge Q,
s Q i the Q-ball configuration is energetically
) " most favored.

On the other hand,

i the I-ball is an object in a real scalar theory.
" There seems no conserved quantity!

Stability of the I-ball seems involved
compared to that of Q-ball...




| . Introduction

There is a fact: J. Berges and |. Jaeckel,2014

“Non-relativistic” mode dominated real scalar field
obeys E.O.M. of U(l) conserved one!!

Properties of I-ball can be understood by
the language of Q-ball!!

Correspondence!!

(j\ non-relativistic non-relativistic

.
Stability of Q-ball is g Quasi stable!

ensured by conserved There seems no conserved
U(Il) charge quantities y

- J -




2. Correspondence

Classically, a real scalar field theory can be
embedded into a complex one!!

A
Let’s consider a simple example; ¥ = —8 POV P — —m 292 — ¢
Original E.O.M

O.M. (\real scalar f‘eld)
@+m*)¢ +21¢° =0 Q @

Introduce a complex scalar field P whose real part is Qb

(O+ m*)R[®] + A(R[®])° =0 Note a fact (%[¢])* =9 Ecpch’i‘ + %qﬂj

[U( |) conserving part A

A« KN A’ .'.3 BA
2 2 —
Si[(D—I—m )CI)—l—Z(I) CI)'—FZ(I)' i| =0 VU(l)__lq)|4

¢ Construct a complex Lagrangian
£ =0,8"0"® — m?*|®|* — Vyy(19]) — V(@, &)

U(I) violating part

Vo= (2% +a)
® 16 )




2. Correspondence

Embedding is always possible in general!

Original Lagrangian
real -
P = %aud,au(p_%mzd)z_v(d)) ¢ (D.COmpleX

Original E.O.M.

0=(O+m?)¢+V'(e)
: Find appropriate potentials
Recast into complex one PRIOPTIEE P

Vywy(12]) N 3Vy(@, <1>*)}

dd' Jd'

0= (O+m?)R[e] +V'(R[2]) =R [(D+m2)¢)+

Complex Lagrangian Yo UCD) conserving paﬂ
@ — auq)’i'a.uq) _ m2|¢|2 _ VU(l)(lq)l) _ VB(CI), (I)‘i') Vg : U(Q1) violating part

Generate the same E.O.M.
for ¢ =R[D]




2. Correspondence

Examples| __ @te the same E.O.M.
~_ for ¢=R[2]

Original interaction potential (log case)

* V(o) = ——m °¢*KIn f with K <« 1

0
Corresponding complex Lagrangian

% = 09,90 % —m*|®|* — Vy)(|2]) — (@, 2")

P

Vi = —m2(@| Klnl o | with @ = §¢g,

0
-m?K ®* + @t ) @ + Ot
6 |(p|2 + ZC m°K |(D|2n—2

Vi = with ¢, being numerical factors

n=3

Then, if the effects from Vgare negligible,
the dynamics follows the U(l) symmetry!!!




2. Correspondence

If non-relativistic modes dominate, the effects
of Vg are negligible!!

wo conditions for such a situation (non-relativistic condition

|. mass term dominates the potential

|V (@0, @})| ~ V{Jm(lcbon\ < m?|dy| 4 @y : typical amP"tude)

2. @ can be separated into two part as

D ="MW + 5O
JV *W
W] > i | | a0
W :slowly varying field mot m-ot
0D : fast oscillating but small <[|5(D| < |‘I’|j

Note: Higher momentum modes must be small.




2. Correspondence

E.O.M. for such a configuration can be written as

8 1
0= |:_21ma - V)‘+ UU(l}(l\pD] \I/, UU(])(I\IJD = MVU(I)(I\I}D’

where we neglect [ ® ="MW+ 5D

* higher time derivative on ¥ W :slowly varying field
0D : fast oscillating but small

\_

* terms containing 5@

. the term 2V® (avp/80" > —etm(2/4)0", for v(@) o —&qb‘L )
3 ;
[ fast oscillating and averages to zero.j

compensated by 69 .

Size of 5® is suppressed thanks to non-relativistic condition

(@+mD)oD + Vi =0 —> 6D ~ |Vi|/m? < |y




2. Correspondence

We have seen that if the following non-relativistic
conditions (1, 2) are satisfied;

|. mass term dominates the potential
: d D, : typical litud
(VB(CDO,(D(’;) ~ VU(I)(|(DO|) < m2|Dy| o : typical amplitu e)

2. @ can be separated into two part as
D = o MY 1 5D WV :slowly varying field

then,
the dynamics is well describec

£ =0,9'0"® —m*

0D : fast oscillating but small

by U(l) conserved one!

O — Vyy(12])

.. The existence of |-ball in non-relativistic regime ..
% can be understood by the language of Q-ball! ;’




3. Discussion

Discussion about the formation of the |-ball.

As long as the non-relativistic condition(1,2) holds,
the dynamics can be described by U(1) conserved one.

The typical timescale of the Q-ball formation is
the timescale of oscillation. In that timescale,

N\ /" the effects from Vi are supposed to be negligible.

The formation process of the I-ball will be described
by that of Q-ball as long as non-relativistic condition holds.

In order to confirm this statement,
we may need a numerical lattice study...




3. Discussion

Dlscu55|on about the instability of the I-ball.

The shape of the I-ball satisfy the non-relativistic condition.

Balance between pressure and the attractive force: LV, (®o)/®, ~ 1 with L being a typical saze.
/e = Lo =~ Lm > 1 (using [V{,,,(@)l/@; > m?) —The shape is wide.

However, the U(l) symmetry is an approximate one.

Vuay: U(1) conserving part
Vg : U(1) violating part

£ =03,9'0"® —m?|@|* — Vy(|@]) — Vp(@,9")

The stability of I-ball is not exactly ensured.

In the paper, we show effects from U(I) violating part are not effective in the time scale of oscillation
for some examples. See arXiv:1405.3233 if you are interested in it.




3. Summary

In the non-relativistic regime, a classical real scalar field
theory can be embedded into a complex one with a
conserved U(l) charge.

From this fact, we have shown an I-ball can be understood
as a projection of a Q-ball if the non-relativistic condition

holds.
Thank you for Iis@




Back up!!

Effects fromV_B

E.O.M.for @ =P+ 6P, with @y being a Q-ball solution;

aV(int) 3 VU(]) ) +
0% HRPTS with V™ = Viya)(@)) + Va(®, D).

d=d,+5¢

(El+m2) 5b = —

We divide 5@ into two parts;

0D = 0Dp + 0P where O0Dmp compensates V5 and 6@y, is fluctuations around the ball.

For quartic potentials;

D+m2—§|¢ 6@ ~&q>*3 — illati
5 1% emp = 7 g Just oscillating.

32 37 2 : :
(D +m? — ?I%IZ) 5%y = —- (23 +@}") 58] —particle productions
may happen.




Back up!!

Particle productions

Example; quartic and sixtic potential

3A . 58 "
Vo (|®]) = ——8—14’| + ml‘l’l ,

1= (007) 225 )

Four to two

b

Ae®w by quartic interaction
PR

2 . e s .
Ae® (%) w < Ae?w by sixtic interaction

€ = 1/wL <« 1 (L: typical size of the ball)




Back up!!

Two to two charge violating process may happen.

Assume there exist a mode with frequency omega
inside the ball.

E'~w(Q-AQ) [Q—AQ]+ w(Q)AQ
2,
~ (@0 - 2°Yonq

Q
> w(Q)Q,

The critical condition
dw(Q)

<0,

aQ




/Dy (Wm=0.01)

Quantities

r/R(wm=0.01) 1

Q/Q*

o8

am? 1

34,
Vo (1)) = —-1@]* +

E/(mM-p)Q  se— Do/ Dy, mm—
w=m-—Uu

There are two regime: 9w/3Q s 0.




Back up!!

Examples

Original potential Generate the same E.O.M.
* V()= 29"+ rg® for ¢ =R[0]

Corresponding complex potential

o8

24m2|¢|6’

3,
Vo (|2) = ——=|®]" +

o= (00 9) 22 o)

Then, if the effects from Vg is negligible,
the dynamics follows the U(1) symmetry!!!




Back up!!

‘ o
1 More strictly speaking, stability of ®

. the Q-ball can be seen as following.

Conserved charge Q = if(CDJr&OCD — ®Jy P x

With fixed Q, the lowest energy configuration can be found by the method of Lagrange multiplier

F[CI), a)()] =E+ wy [Q — zf(®+80CD — ®8o®+)d3x] with E = f(&0®+&0® + 81@*81@ + m? O D + VU(l))d3x

The condition 51"[;13&)@0] = (0 may have a bounce solution

Just like a Newton’s motion equation
D(x) = D(r)e~'@o! with a friction.

92 20 19Vyq)

8r2q)+r8r®+(w0 m-)D > 30 0
0"@(;: 0) _ D(r — 00) = 0 (Stops at r=o0

(With fixed Q, the lowest energy configuration becomes localized one. )




1
Vet = E(w% — m*)®* - Vyq

ﬁq)-i_ ;§®+(w0—m )(D

D(x) = D(r)e @0t 7
(Stops at r=00

The shallowness of the potential

is important to have a bounce solution! There exists a
A A | bounce solution!
Vet Vet

Shallowness
> >

D D

tor wog = m

Note that E =~ woQ < mQ

for wo=m—u, 4 <K m

With a large amplitude, the effective mass o, becomes small.
Well understandable!!




Back up!!

Typical size of the balls

Balance between pressure and the attractive force:
L?V(1,(®)/®, ~ 1. L:typical size of the ball.

Non-relativistic condition

|VB(@o, DF)| ~ |V (1Dol)| < m?|@

l/le=Lw~Lm>1,
Typical size is large!!




Back up!!

Embedding is always possible in general!!

We consider a real scalar ¢ field theory with the potential V(2¢?). The equation of motion is
the following

O¢ +4V'(2¢*)¢ =0. (A.1)
We can obtain the corresponding complex Lagrangian;
£ =0,8"0"® —m?*|®|* — Vyy(12]) — V(@, &)
with
Vuay([21%) = Gy (|2,
ACX DEDIWAC D [@2" + @*2"]

n=2

2(n+1)G, 1 (x) +xG_ (x)=2g,(x)— G/ (x). ,Gi(x) =0

2 J‘“ V' (r?(1+ cos26)) - cos O - cos((2n + 1)9)d9

2Y) —
gn(r )_ '7__(- r2n

-7




For example, in the case of polynomial potential V(x) = Ax™*!/(m+1) with constant A, G,(x)
can be obtained as

1+ _1 " m Cm—n . 1
(=1)" 2ms1 L x™H1-n for n < m + 1 otherwise zero. (A.15)

G =22 MA
(%) 2 m+n+1

VU(1)(|‘I’|2) = Gy(|2]?),
VB(q): q,’r) - Z Gn(lq)lz) [¢2n + q)’an:l

n=2




