

Gravitational waves from bubble collisions: simulations and approximations

PRL 112, 041301 (2014) [arXiv:1304.2433]

David J. Weir

with Mark Hindmarsh, Stephan J. Huber and Kari Rummukainen

SEWM, 18 July 2014

Why study first-order phase transitions?

- Baryogenesis!
- Strongly first-order EW phase transitions dump lots of energy into GWs
 - Need to make predictions for the observable power spectrum Talk by Hindmarsh
- What physics can we extract from GW power spectrum at EW scales?
- Extended models in which EW phase transition would be first order Andersen, Laine *et al.*, Kozaczuk *et al.*, Kamada and Yamada, Carena *et al.*, Bödeker *et al.*...
 - 2HDM
 - MSSM ('light stop'), nMSSM, NMSSM
 - Dimension 6 operators
 - If you feel lucky: technicolor
- Test envelope approximation Kosowsky, Turner and Watkins; Huber and Konstandin
- GUT-scale phase transitions also interesting
 Giblin and Martens, Child and Ciblin

Giblin and Mertens, Child and Giblin

- Thin-walled bubbles, no fluid
- Bubbles expand with velocity $v_{\rm w}$
- Stress-energy tensor $\propto R^3$ on wall
- Overlapping bubbles \rightarrow GWs
- Keep track of solid angle
- Collided portions of bubbles source gravitational waves
- Resulting power spectrum is simple
 - One scale (R_*)
 - Two power laws (k^3, k^{-1})

The envelope approximation makes predictions

Predict k^3 in IR, peak at R_*^{-1} , then k^{-1} in UV...

The shock waves set up by the expanding higgs field are neglected.

Our approach

- Scalar field plus ideal relativistic fluid, usual relativistic hydro Wilson and Matthews
 - Split stress-energy tensor $T^{\mu\nu}$ into field and fluid bits Ignatius, Kajantie, Kurki-Suonio and Laine

$$\partial_{\mu}T^{\mu\nu} = \partial_{\mu}(T^{\mu\nu}_{\text{field}} + T^{\mu\nu}_{\text{fluid}}) = 0$$

 The parameter η sets the scale of friction caused by the bubble moving through the plasma:

$$\partial_{\mu}T^{\mu\nu}_{\text{field}} = \eta u^{\mu}\partial_{\mu}\phi\partial^{\nu}\phi \qquad \partial_{\mu}T^{\mu\nu}_{\text{fluid}} = -\eta u^{\mu}\partial_{\mu}\phi\partial^{\nu}\phi$$

• $V(\phi, T)$ can be kept quite simple

$$V(\phi, T) = \frac{1}{2}\gamma(T^2 - T_0^2)\phi^2 - \frac{1}{3}\alpha T\phi^3 + \frac{1}{4}\lambda\phi^4$$

- α , β , γ , T_0 chosen to match scenario of interest
- Assume friction η quite big (not runaway case)
 - Scalar field dynamics trivial: tracking field that gives us shocks

The strongest deflagration we dare treat: $v_{\rm f}^{\rm max}\approx 0.12$

Dynamic range issues

- Most realtime lattice simulations in the early universe have a single [nontrivial] length scale
- Here, many length scales important

• Difficult to fit everything on a computer :(

- No expansion (not relevant on transition timescales)
- Bubbles have to be macroscopic initially
- Start with slightly-larger-than-critical macroscopic bubble (alternative: insert scaling profile)
- Nucleate bubbles with an exponentially increasing rate per unit volume (neglecting the T-dependence)

$$P = P_0 \exp(\beta(t - t_0))$$

- Dwindling false vacuum turns this into a double exponential
- All the results in this talk are for a 'somewhat' strong transition ($\alpha_N = 0.1$)
- Mostly study deflagrations; detonations seem quite similar (to us!)

Slices – acoustic waves

Simulations at 1024^3 , deflagration, fluid kinetic energy density, \sim 250 bubbles

- After the scalar field dynamics have ceased, acoustic waves are visible.
- Distinct (not 'envelope'-like) GW source that remains on for a Hubble time.
- In true EW scenario, fluid source much longer lasting than scalar field.

Lots of latent heat = lots of fluid kinetic energy

Relative size of field and fluid stress-energy contributions

$$(\bar{\epsilon}+\bar{p})\overline{U}_{\phi}^{2} = \frac{1}{V}\int d^{3}x(\partial_{i}\phi)^{2} \qquad (\bar{\epsilon}+\bar{p})\overline{U}_{f}^{2} = \frac{1}{V}\int d^{3}x\gamma^{2}(\epsilon+p).$$

Simulation slice example

Acoustic waves source linear growth of gravitational waves

• Sourced by T^{fluid} only (T^{field} source is small constant shift)

• Source scales as $(\overline{arepsilon}+\overline{p})^2 U^4$ (and R_* on dimensional grounds)

• Slopes match, up to O(1) differences, despite huge differences in T^{fluid}

Velocity power spectra for a strong (ish) transition, $\alpha_{\rm N}=0.1$

- Most power is in the longitudinal modes acoustic waves, not turbulence
- System is quite linear. No power laws? Reynolds number is 100.
- If we know $dV^2/d\ln k$, can work out $\dot{\rho}_{\rm GW}/d\ln k$...?

GW power spectra

- By late times, fluid source dominates at all length scales
- Will only be stopped by expansion: [up to] $1000 \times$ enhancement!

Conclusions

- Acoustic waves set up after bubble collisions are a significant source of gravitational wave power in first-order phase transitions
- A strongly first order phase transition at the electroweak scale would source far more gravitational waves than previously thought
- The 'Envelope approximation' (energy density carried on the surface of a bubble) does not correctly model the collisions of bubbles
- System is very linear: the fluid power spectrum is just a convolution away from the GW power spectrum
- Motivates an 'acoustic approximation': superimposed random fluid shells with different bubble radii frozen in
- For slow wall velocities, can then replace a highly nonlinear 2D source (envelope approx) with a linear 1D source (intersecting fluid shells)

Thanks!

